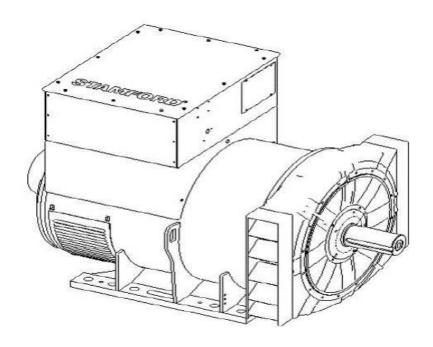
STAMFORD


S6L1M-C4 Wdg.13/14 - Technical Data Sheet

Standards

STAMFORD industrial alternators meet the requirements of the relevant parts of the IEC 60034 and the relevant sections of other international standards such as BS5000-3, ISO 8528-3, VDE 0530, NEMA MG1-32, CSA C22.2-100 and AS 60034. Other standards and certifications can be considered on request.

Quality Assurance

Alternators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

Excitation and Voltage Regulators

Excitation System										
AVR Type	MX321/MX322	MX341	MX321/MX322							
Voltage Regulatio	± 0.5%	± 1%	± 0.5%		with 4% Engine Governing					
AVR Power	PMG	PMG	PMG							

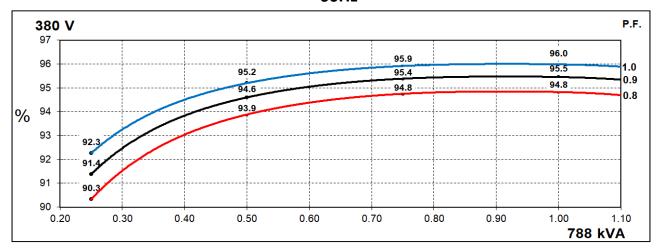
No Load Excitation Voltage (V)	21.08
No Load Excitation Current (A)	1.14
Full Load Excitation Voltage (V)	56
Full Load Excitation Current (A)	2.7
Exciter Time Constant (seconds)	0.17

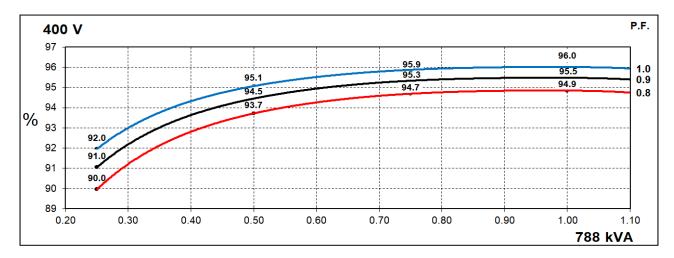
STAMFORD S6L1M-C4 Wdg.13/14

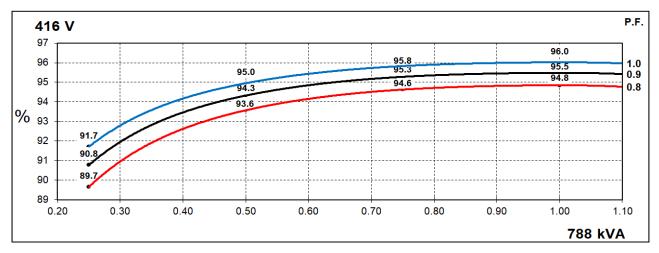
Electrical Data										
Insulation System			H							
Stator Winding	Double Layer Concentric									
Winding Pitch	2/3									
Winding Leads		6/	/12							
Winding Number		13	3/14							
Number of Poles			4							
IP Rating		IF	223							
RFI Suppression	BS EN 6		00-6-4,VDE 0875G, VDI	E 0875N.						
Waveform Distortion	NO LOAD <	1.5% NON-DISTORTIN	IG BALANCED LINEAR	LOAD < 5.0%						
Short Circuit Ratio		1/	/Xd							
Steady State X/R Ratio		18	3.57							
		_60	Hz							
Telephone Interference		TIF	⁻ <50							
Cooling Air Flow		1.37	m³/sec							
Voltage Series Star (V)	380	400	416	-						
Voltage Parallel Star (V)	190	200	208	_						
Voltage Delta (V)	220	230	240	_						
kVA Base Rating (Class H) for Reactance Values (kVA)	788	788	788	-						
Saturated Values in Per Unit	at Base Ratings ar	nd Voltages								
Xd Dir. Axis Synchronous	1.27	1.14	1.06	_						
X'd Dir. Axis Transient	0.15	0.13	0.12	-						
X"d Dir. Axis Subtransient	0.11	0.10	0.09	_						
Xq Quad. Axis Reactance	1.58	1.42	1.32	-						
X"q Quad. Axis Subtransient	0.25	0.23	0.21	_						
XL Stator Leakage Reactance	0.06	0.06	0.05	-						
X2 Negative Sequence Reactance	0.05	0.04	0.04	-						
X0 Zero Sequence Reactance	0.01	0.01	0.01	-						
Unsaturated Values in Per Ur	nit at Base Ratings	and Voltages								
Xd Dir. Axis Synchronous	1.52	1.37	1.27	-						
X'd Dir. Axis Transient	0.17	0.15	0.14	-						
X"d Dir. Axis Subtransient	0.13	0.12	0.11	-						
Xq Quad. Axis Reactance	1.62	1.47	1.36	-						
X"q Quad. Axis Subtransient	0.30	0.27	0.25	-						
XL Stator Leakage Reactance	0.07	0.06	0.06	-						
XIr Rotor Leakage Reactance	0.07	0.07	0.06	-						
X2 Negative Sequence Reactance	0.06	0.05	0.05	_						
X0 Zero Sequence Reactance	0.01	0.01	0.01	_						

^{*} Parallel Star connection only available with 12 leads winding option

STAMFORD

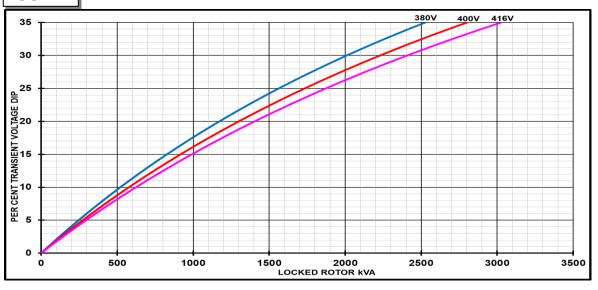

S6L1M-C4 Wdg.13/14


Time Constants (Seconds)							
T'd Transient Time Const.	0.0	089					
T"d Sub-Transient Time Const.	0.0	022					
T'do O.C. Field Time Const.	3.3	321					
Ta Armature Time Const.	0.0	025					
T"q Sub-Transient Time Const.	0.0	095					
Resistances in Ohms (Ω) at 2	2°C						
Stator Winding Resistance (Ra), per phase for series connected		0200					
Rotor Winding Resistance (Rf)	1.	63					
Exciter Stator Winding Resistance	18	.47					
Exciter Rotor Winding Resistance per phase	0.0	095					
PMG Phase Resistance (Rpmg) per phase	1.91						
Positive Sequence Resistance (R1)	0.0	025					
Negative Sequence Resistance (R2)	0.0029						
Zero Sequence Resistance (R0)	0.0025						
Saturation Factors	41	6V					
SG1.0	1.1	132					
SG1.2	4.11						
Mechanical Data							
Shaft and Keys	, , ,	ed to better than ISO 21940-11 Grade 2.5 for ng generators are balanced with a half key.					
	1 Bearing	2 Bearing					
SAE Adaptor	SAE0,1	SAE0,1					
Moment of Inertia	16.455 kgm²	15.93 kgm²					
Weight Wound Stator	803kg	803kg					
Weight Wound Rotor	721kg	679kg					
Weight Complete Alternator	1897kg	1970kg					
Shipping weight in a Crate	1940kg	2013kg					
Packing Crate Size	160x105x153(cm)	160x105x153(cm)					
Maximum Over Speed	2250 RPM fo	r two minutes					
Bearing Drive End	-	BALL 6224					
Bearing Non-Drive End	BALL 6317	BALL 6317					



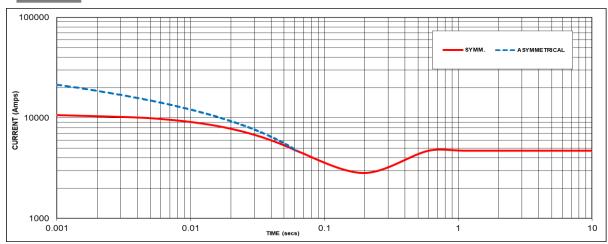
THREE PHASE EFFICIENCY CURVES

60Hz



S6L1M-C4 Wdg.13/14

Locked Rotor Motor Starting Curves - Separately Excited


Transient Voltage	Dip Scaling Factor	Transient Voltage I	Rise Scaling Factor
Lagging PF	Scaling Factor	Lagging PF	Scaling Factor
<= 0.4	1.00	<= 0.4	1.25
0.5	0.95	0.5	1.20
0.6	0.90	0.6	1.15
0.7	0.86	0.7	1.10
0.8	0.8 0.83		1.00
0.9	0.75		
0.95 0.70			
1	0.65		

Note: To determine % Transient Voltage Dip or Voltage Rise at various PF, multiply the % Voltage Dip from the curve directly by the Scaling Factor.

Three-phase Short Circuit Decrement Curve - Separately Excited

Sustained Short Circuit = 4726 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz				
Voltage	oltage Factor		Factor			
-			X 1.00			
-			X 1.05			
-			X 1.09			
		-	-			

The sustained current value is constant irrespective of voltage level

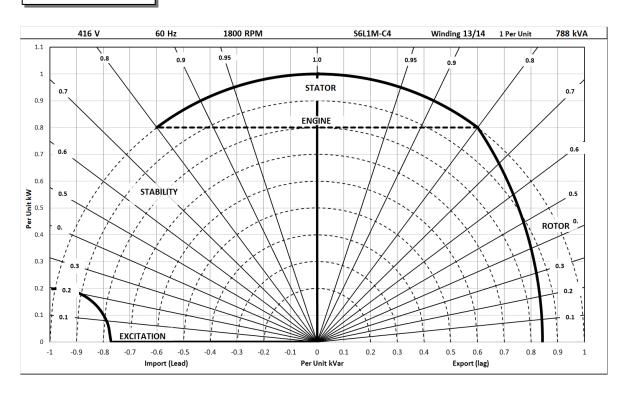
If MX322 or digital AVR is used, the sustained short-circuit current value is to be multiplied by a factor of 1.1.

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

Note 3 All other times are unchanged


Curves are drawn for Star connections under no-load excitation at rated speeds. For other connection (where applicable) the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

Typical Alternator Operating Charts

416V/60Hz

RATINGS AT 0.8 POWER FACTOR

(Class - Temp Rise Standby		Cont. H - 110/50°C	Cont. F - 90/50°C	Cont. B - 70/50°C
	Star (V)	N/A	N/A	N/A	N/A
50	Parallel Star (V)	N/A	N/A	N/A	N/A
Hz	Delta (V)	N/A	N/A	N/A	N/A
	kVA	N/A	N/A	N/A	N/A
	kW	N/A	N/A	N/A	N/A
	Efficiency (%)	N/A	N/A	N/A	N/A
	kW Input	N/A	N/A	N/A	N/A

	Star (V)	380	400	416	N/A	380	400	416	N/A	380	400	416	N/A	380	400	416	N/A
60	Parallel Star (V)	190	200	208	N/A	190	200	208	N/A	190	200	208	N/A	190	200	208	N/A
Hz	Delta (V)	220	230	240	N/A	220	230	240	N/A	220	230	240	N/A	220	230	240	N/A
	kVA	N/A	N/A	N/A	N/A	788	788	788	N/A	731	731	731	N/A	638	638	638	N/A
	kW	N/A	N/A	N/A	N/A	630	630	630	N/A	585	585	585	N/A	510	510	510	N/A
	Efficiency (%)	N/A	N/A	N/A	N/A	94.8	94.9	94.8	N/A	94.9	94.9	94.8	N/A	94.8	94.8	94.7	N/A
	kW Input	N/A	N/A	N/A	N/A	665	665	665	N/A	616	616	617	N/A	538	538	539	N/A

^{*} Parallel Star connection only available with 12 leads winding option

De-rates

All values tabulated above are subject to the following reductions:

- 5% when air inlet filters are fitted
- 3% for every 500 meters by which the operating altitude exceeds 1000 meters above mean sea level
- 3% for every 5°C by which the operational ambient temperature exceeds 40°C @ Class H temperature rise (please refer to applications for ambient temperature de-rates at other temperature rise classes)
- For any other operating conditions impacting the cooling circuit please refer to applications

Note: Requirement for operating in an ambient exceeding 60°C and altitude exceeding 4000 meters (for <690V) or 1500 meters (for >690V) must be referred to applications.

Dimensional and Torsional Drawing

For dimensional and torsional information please refer to the alternator General Arrangement and rotor drawings available on our website (http://stamford-avk.com/)

Note: Continuous development of our products means that the information contained in our data sheets can change without notice, and specifications should always be confirmed with Cummins Generator Technologies prior to purchase.

Cummins Generator Technologies

View our videos at youtube.com/stamfordavk

stamford-avk.com

For Applications Support: applications@cummins.com

For Customer Service: emea.service@cummins.com

For General Enquiries: Stamford-avk@cummins.com

Copyright 2020. Cummins Generator Technologies Ltd. All rights reserved.

Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD is a registered trade mark of Cummins Generator Technologies Ltd.

