

UCM224E - Winding 14

Technica Data Sheet

UCM224E SPECIFICATIONS & OPTIONS

STANDARDS

Marine generators may be certified to Lloyds, DnV, Bureau Veritas, ABS, Germanischer-Lloyd or RINA. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX341 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) control system, and is standard on marine generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained overexcitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, threephase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 6 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level. 3% for every 5 C by which the operational ambient temperature exceeds 50 C.

Note: Requirement for operating in an ambient exceeding 60 C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

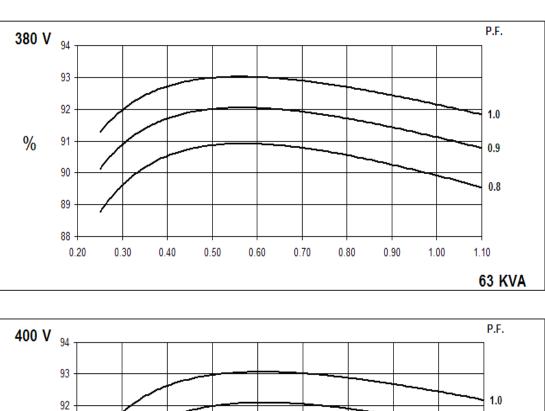
UCM224E

STAMFORD

WINDING 14

CONTROL SYSTEM	SEPARATE									
A.V.R.	SEPARATELY EXCITED BY P.M.G. MX341 MX321									
VOLTAGE REGULATION	± 1% ± 0.5 % With 4% ENGINE GOVERNING									
SUSTAINED SHORT CIRCUIT	± 1% ± 0.5 % With 4% ENGINE GOVERNING REFER TO SHORT CIRCUIT DECREMENT CURVES (page 5)									
SUSTAINED SHORT CIRCUIT										
INSULATION SYSTEM	CLASS H									
PROTECTION		IP23								
RATED POWER FACTOR		0.8								
STATOR WINDING		DOUBLE LAYER LAP								
WINDING PITCH				TWO	THIRDS					
WINDING LEADS		12								
MAIN STATOR RESISTANCE			0.07 Ohm	IS PER PHASE AT	T 22°C STAR CON	NECTED				
MAIN ROTOR RESISTANCE				0.69 Ohm	ns at 22°C					
EXCITER STATOR RESISTANCE				20 Ohms	s at 22°C					
EXCITER ROTOR RESISTANCE				0.078 Ohms PEF	R PHASE AT 22°C					
R.F.I. SUPPRESSION	B	BS EN 61000-6-2 & BSEN 61000-6-4,VDE 0875G, VDE 0875N. refer to factory for others								
WAVEFORM DISTORTION		NO L	.OAD < 1.5 <mark>%</mark>	NON-DISTORTIN	G BALANCED LINE	EAR LOAD < 5.0%				
MAXIMUM OVERSPEED				2250 F	Rev/Min					
BEARING DRIVE END	BALL. 6312-2RS (ISO)									
BEARING NON-DRIVE END		BALL. 6309-2RS (ISO)								
	1 BEARING 2 BEARING					2 BEARING				
WEIGHT COMP. GENERATOR	311 kg 330 kg					330 kg				
WEIGHT WOUND STATOR		103 kg								
WEIGHT WOUND ROTOR	95.89 kg 87.52 kg					87.52 kg				
WR ² INERTIA	0.4999 kg <mark>m²)</mark> 0.4682 kgm²									
SHIPPING WEIGHTS in a crate	334 kg 351 kg									
PACKING CRATE SIZE		105 x 57 x 96(cm) 105 x 57 x 96(cm)								
TELEPHONE INTERFERENCE	THF<2% TIF<50									
COOLING AIR	0.281 m³/sec 595 cfm									
VOLTAGE STAR	380/220 400/230 416/240				416/240					
kVA BASE RATING FOR REACTANCE VALUES		63		6	33	63				
Xd DIR. AXIS SYNCHRONOUS		2.24 2.03			1.87					
X'd DIR. AXIS TRANSIENT	0.17 0.15			0.14						
X"d DIR. AXIS SUBTRANSIENT		0.12			10	0.09				
Xq QUAD. AXIS REACTANCE				94	0.86					
X"q QUAD. AXIS SUBTRANSIENT					10	0.09				
XL LEAKAGE REACTANCE	0.06		0.05		0.05					
X2 NEGATIVE SEQUENCE	0.08			0.00		0.09				
X0 ZERO SEQUENCE					0.05 0.05					
REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED										
T'd TRANSIENT TIME CONST.			VALUES		28s					
T"d SUB-TRANSTIME CONST.	0.0265									
T'do O.C. FIELD TIME CONST.	0.7s									
Ta ARMATURE TIME CONST.	0.006s									
SHORT CIRCUIT RATIO	1/Xd									

0.9


0.8

1.10

63 KVA

UCM224E

Winding 14

%

91

90

89

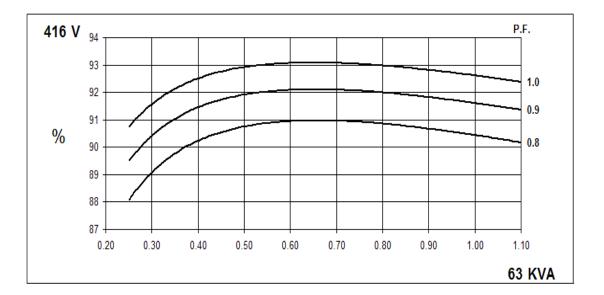
88 + 0.20

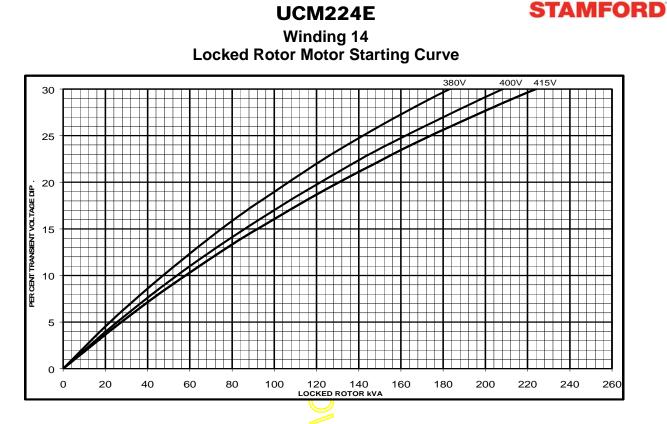
0.30

0.40

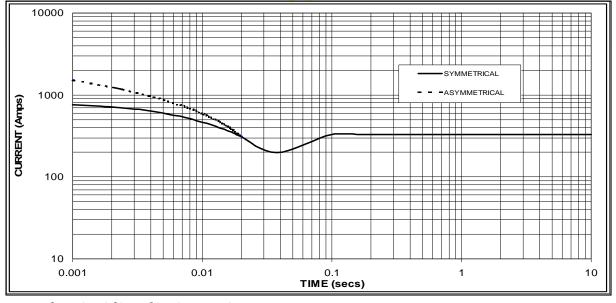
0.50

0.60


0.70


0.80

0.90


1.00

THREE PHASE EFFICIENCY CURVES

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 330 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

Voltage	Factor			
380	X 1.00			
400	X 1.05			
416	X 1.09			

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

The sustained current value is constant irrespective of voltage level

STAMFORD

UCM224E

Winding 14 / 0.8 Power Factor

RATINGS

	Class - Temp Rise Series Star (V)	Cont	. B - 70/	50°C	Cont	F - 90/	50°C	Cont	H - 110	/50°C		
	Series Ster ()/)				Cont. F - 90/50°C			Cont.		Cont. H - 110/50°C		
	Series Star (V)	380	400	416	380	400	416	380	400	416		
60 Hz	Parallel Star (V)	190	200	208	190	200	208	190	200	208		
	Series Delta (V)	220	230	240	220	230	240	220	230	240		
	kVA	50.0	50.0	50.0	56.3	56.3	56.3	63.0	63.0	63.0		
	kW	40.0	40.0	40.0	45.0	45.0	45.0	50.4	50.4	50.4		
	Efficiency (%)	90.6	90.8	90.9	90.3	90.5	90.7	89.9	90.2	90.4		
	kW Input	44.2	44.1	44.0	49.9	49.8	49.7	56.1	55.9	55.7		
$\mathbf{F}_{\mathbf{F}} = \mathbf{F}_{\mathbf{F}} = $												

SINGLE BEARING ADAPTORS					COUPLING DISCS		
ADAPTOR	A	B	С	D	DISC	AN	
SAE 1	814,3	751,3	314,3	191,3	SAE 8	61,90	
SAE 2	800	737	300	177	SAE 10	53,98	
SAE 3	800	737	300	177	SAE 11,5	39,68	
SAE 4	800	737	300	177	SAE 14	25,40	

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.