
STAMFORD®

UCM274C - Winding 311

Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Marine generators may be certified to Lloyds, DnV, Bureau Veritas, ABS, Germanischer-Lloyd or RINA. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX341 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) control system, and is standard on marine generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

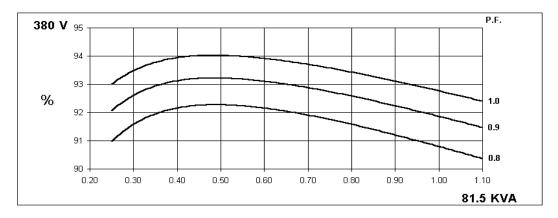
The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

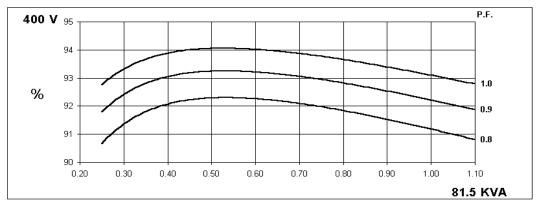
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

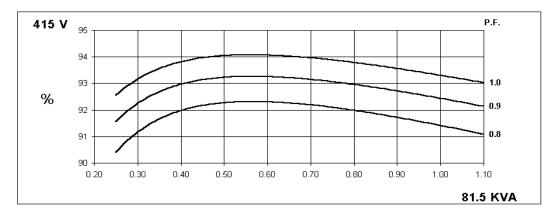
Front cover drawing typical of product range.

WINDING 311

CONTROL SYSTEM	SEPARATELY EXCITED BY P.M.G.								
A.V.R.	MX321	MX321 MX341							
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% ENGINE GOVERNING						
SUSTAINED SHORT CIRCUIT	REFER TO	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)							

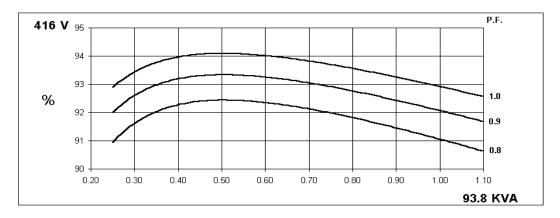

SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIF	RCUII DECE	REMENT CU	RVES (page	: 7)						
INSULATION SYSTEM	CLASS H											
PROTECTION			IP23									
RATED POWER FACTOR				0	.8							
STATOR WINDING	DOUBLE LAYER CONCENTRIC											
WINDING PITCH	TWO THIRDS											
WINDING LEADS	12											
STATOR WDG. RESISTANCE	0.059 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED											
ROTOR WDG. RESISTANCE	1.12 Ohms at 22 °C											
EXCITER STATOR RESISTANCE	20 Ohms at 22 ℃											
EXCITER ROTOR RESISTANCE	0.078 Ohms PER PHASE AT 22°C											
R.F.I. SUPPRESSION	BS EN 6	61000-6-2 &	BS EN 6100	0-6-4,VDE (875G, VDE	0875N. refe	r to factory fo	or others				
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTIN	G BALANCE	D LINEAR I	OAD < 5.0%	6				
MAXIMUM OVERSPEED				2250 F	Rev/Min							
BEARING DRIVE END				BALL. 6315	5-2RS (ISO)							
BEARING NON-DRIVE END				BALL. 6310								
		1 BEA	ARING		2 BEARING							
WEIGHT COMP. GENERATOR		406	6 kg		420 kg							
WEIGHT WOUND STATOR		13	l kg		131 kg							
WEIGHT WOUND ROTOR		133	.8 kg		122.8 kg							
WR ² INERTIA			8 kgm²		0.9781 kgm ²							
SHIPPING WEIGHTS in a crate			9 kg		452 kg							
PACKING CRATE SIZE			x 103 (cm)		105 x 67 x 103 (cm)							
PACKING CHATE SIZE			Hz		60 Hz							
TELEBLIONE INTEREPREDICE					TIF<50							
TELEPHONE INTERFERENCE			<2%		0.617 m³/sec 1308 cfm							
COOLING AIR			ec 1090 cfm									
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
kVA BASE RATING FOR REACTANCE VALUES	81.5	81.5	81.5	N/A	93.8	102.5	102.5	108.8				
Xd DIR. AXIS SYNCHRONOUS	2.00	1.80	1.67	-	2.30	2.25	2.06	2.00				
X'd DIR. AXIS TRANSIENT	0.16	0.15	0.14	-	0.20	0.19	0.18	0.17				
X"d DIR. AXIS SUBTRANSIENT	0.11	0.11	0.10	-	0.13	0.13	0.12	0.11				
Xq QUAD. AXIS REACTANCE	1.30	1.17	1.08 -		1.32 1.29		1.18	1.15				
X"q QUAD. AXIS SUBTRANSIENT	0.15 0.13		0.12	-	0.19 0.18		0.17	0.17				
XLLEAKAGE REACTANCE	0.06	0.05	0.05	-	0.07	0.06	0.06	0.06				
X2 NEGATIVE SEQUENCE	0.13	0.11	0.11	-	0.16	0.16	0.14	0.14				
X ₀ ZERO SEQUENCE	0.08	0.07	0.07	-	0.10	0.10	0.09	0.09				
REACTANCES ARE SATURAT	TED	VA	LUES ARE	PER UNIT A	T RATING A	AND VOLTA	GE INDICAT	ED				
T'd TRANSIENT TIME CONST. 0.028 s												
T"d SUB-TRANSTIME CONST.	CONST. 0.01 s											
T'do O.C. FIELD TIME CONST.				0.	8 s							
Ta ARMATURE TIME CONST.				0.0	07 s							
SHORT CIRCUIT RATIO				1/	Xd							

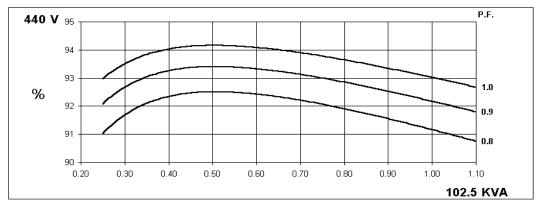


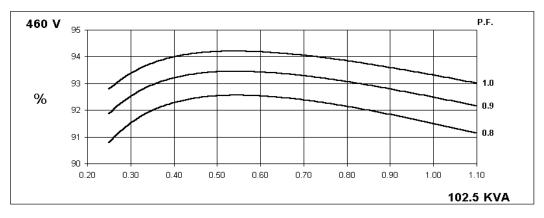

UCM274C Winding 311

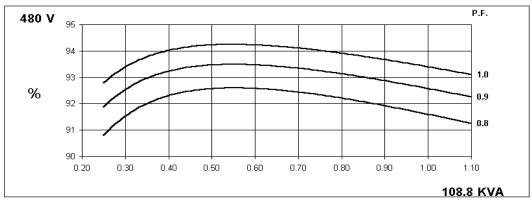
STAMFORD

THREE PHASE EFFICIENCY CURVES

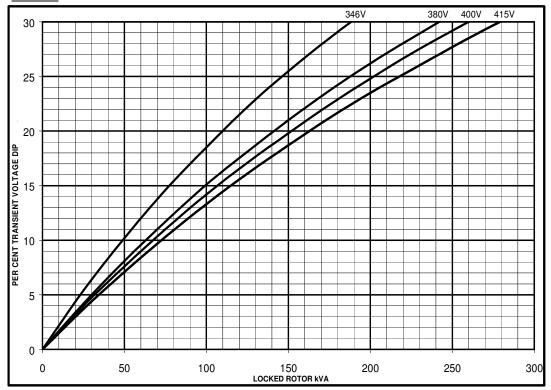


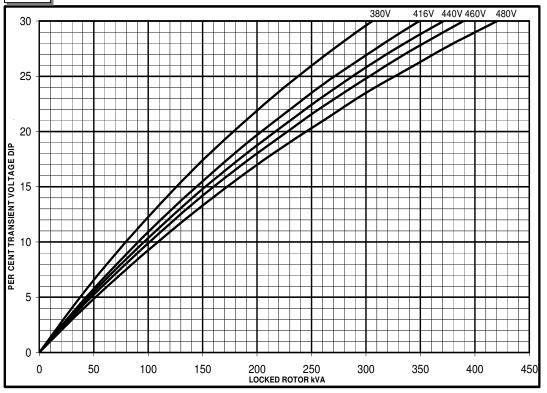

60 Hz


UCM274C Winding 311

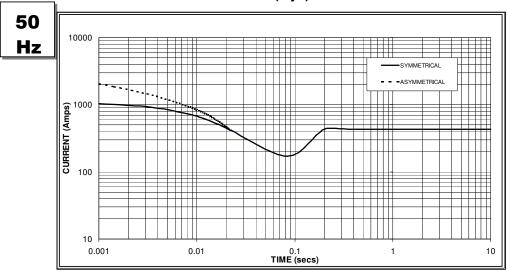

STAMFORD

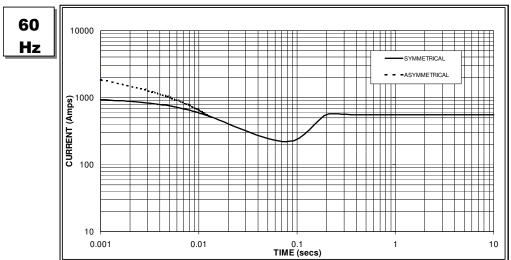
THREE PHASE EFFICIENCY CURVES




Winding 311

50 Hz


Locked Rotor Motor Starting Curve



Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 430 Amps

Sustained Short Circuit = 550 Amps

Note 1 The following multiplication to

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60Hz						
Voltage	Factor	Voltage	Factor					
380v	X 1.00	416v	X 1.00					
400v	X 1.07	440v	X 1.06					
415v	X 1.12	460v	X 1.12					
			X 1.17					

The sustained current value is constant irrespective of voltage level

The alternator is capable of delivering 300% short-circuit current for 10 seconds as per requirements specified by marine agencies.

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

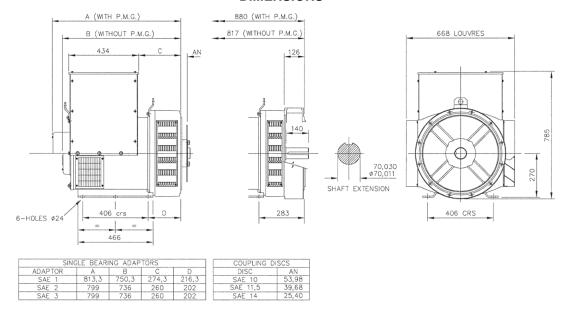
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732



Winding 311 / 0.8 Power Factor

RATINGS

	(Class - Temp Rise	Cont. E - 65/50 ℃			Cont. B - 70/50 ℃				Cont. F - 90/50 ℃				Cont. H - 110/50 ℃				
	EΛ	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	50	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
		kVA	65.0	65.0	65.0	N/A	67.5	67.5	67.5	N/A	77.5	77.5	77.5	N/A	81.5	81.5	81.5	N/A
		kW	52.0	52.0	52.0	N/A	54.0	54.0	54.0	N/A	62.0	62.0	62.0	N/A	65.2	65.2	65.2	N/A
		Efficiency (%)	91.6	91.8	92.0	N/A	91.5	91.8	91.9	N/A	91.0	91.4	91.6	N/A	90.8	91.2	91.4	N/A
L		kW Input	56.8	56.6	56.5	N/A	59.0	58.8	58.8	N/A	68.1	67.8	67.7	N/A	71.8	71.5	71.3	N/A
	<u></u>	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	60	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Hz	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
		kVA	72.0	72.5	75.0	75.0	75.0	77.5	80.0	80.0	90.0	92.5	97.5	97.5	93.8	102.5	102.5	108.8
		kW	57.6	58.0	60.0	60.0	60.0	62.0	64.0	64.0	72.0	74.0	78.0	78.0	75.0	82.0	82.0	87.0
		Efficiency (%)	91.9	92.2	92.3	92.5	91.8	92.0	92.2	92.4	91.2	91.5	91.7	91.9	91.1	91.2	91.5	91.6
		kW Input	62.7	62.9	65.0	64.9	65.4	67.4	69.4	69.3	78.9	80.9	85.1	84.9	82.4	89.9	89.6	95.0

DIMENSIONS

STAMFORD

www.cumminsgeneratortechnologies.com

Copyright 2021, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.