

HC Wechselstromgeneratoren Benutzerhandbuch

Inhaltsverzeichnis

1.	VORWORT	1
	1.1 Über dieses Handbuch	1
2.	SICHERHEITSMAßNAHMEN	3
	2.1 Sicherheitshinweise und verwendete Symbole	3
	2.2 Allgemeine Hinweise	3
	2.3 Anforderungen an die Mitarbeiter	3
	2.4 Risikobewertung	3
	2.5 Persönliche Schutzausrüstung (PSA)	4
	2.6 Geräuschemission	4
	2.7 Elektrische Ausrüstung	4
	2.8 Sicherheitsverriegelungen/Kennzeichnung	5
	2.9 Starkes Magnetfeld	5
	2.10 Heben	5
	2.11 Generator-Arbeitsbereiche	6
	2.12 Gefahrenaufkleber	6
		_
3.	SICHERHEITSRICHTLINIEN UND NORMEN	9
	3.1 Niederspannungsrichtlinie: Konformitätserklärung	10
	3.2 Maschinenrichtlinie: Einbauerklärung	12
	3.3 Zusätzliche Angaben zur EMV-Verträglichkeit	14
	3.4 Zusätzliche Angaben zur CSA-Konformität	14
4	EINLEITUNG	15
••	4.1 Allgemeine Beschreibung	15
	4.2 Name des Wechselstromgenerators	15
	4.3 Seriennummer	15
	4.4 Typenschild	15
	4.5 Nachweis der Produktechtheit	16
5.	EINSATZ DES WECHSELSTROMGENERATORS	17
	5.1 Betriebsumgebung	17
	5.2 Luftstrom	17
	5.3 Luftverunreinigungen	17
	5.4 Luftfilter	17
	5.5 Luftfeuchtigkeit	18
	5.6 Antikondensationsheizungen (Stillstandsheizungen)	18
	5.7 Gehäuse	18
	5.8 Vibrationen (Schwingungen)	18
	5.8.1 Definition nach BS 5000–3	19
	5.8.2 Definition nach ISO 8528-9	19
	5.8.3 Schwingungsfrequenzen	19
	5.8.4 Linearschwingungsgrenzen	19
	5.8.5 Linearschwingungsüberwachung	20
	5.8.6 Übermäßige Vibration	21
	5.9 Lager	21
	5.9.1 Gekapselte Lager	21

	5.9.2 Nachschmierbare Lager 5.9.3 Lebensdauer von Lagern 5.9.4 Überwachung des Lagerzustands 5.9.5 Lebenserwartung von Lagern	2 ² 2 ² 2 ²
	5.9.6 Standby-Anwendungen	22
6.	EINBAU IN DEN GENERATORSATZ	23
	6.1 Abmessungen des Wechselstromgenerators	23
	6.2 Anheben des Wechselstromgenerators	23
	6.3 Lagerung	23
	6.3.1 Nach der Lagerung	24
	6.3.2 Anweisung zur Lagerung	24
	6.4 Verkuppeln des Generatorsatzes	24
	6.5 Einlager-Generatoren	26
	6.6 Zweilager-Generatoren	27
	6.7 Prüfungen vor dem Einschalten	27
	6.8 Drehrichtung	27
	6.9 Phasendrehung	28
	6.10 Spannung und Frequenz	28
	6.11 Einstellung des automatischen Spannungsreglers (AVR)	28
	6.12 Elektrische Anschlüsse	29
	6.13 Netzanschluss: Stoßspannungen und Mikrounterbrechungen	29
	6.14 Variierende Lasten	30
	6.15 Synchronisierung	30
	6.15.1 Parallelschalten bzw. Synchronisieren von Wechselstromgeneratoren	3
_		
7.		
•	WARTUNG UND INSTANDHALTUNG	33
	7.1 Empfohlener Wartungsplan	33
	7.1 Empfohlener Wartungsplan	33 37
	7.1 Empfohlener Wartungsplan	3; 3; 3;
	7.1 Empfohlener Wartungsplan 7.2 Lager	37 37 37
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren	37 37 37 38
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente	33 37 38 38
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung	33 37 37 38 38 39
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit	33 37 38 38 39 39
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen	33 33 33 38 39 39 40
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit	33 37 38 38 39 39 40 40
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem	33 35 38 39 39 40 40 44
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung	33 37 38 38 39 39 40 40
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem	33 35 38 39 39 40 40 44
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung 7.4.2 Sicherheit 7.4.3 Anforderungen für Kühlsystemtest	33 35 35 38 39 40 40 44
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung 7.4.2 Sicherheit	3; 3; 3; 3; 3; 3; 4; 4; 4; 4; 4;
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung 7.4.2 Sicherheit 7.4.3 Anforderungen für Kühlsystemtest	33 33 33 33 33 40 40 44 44 44 44
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente. 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung 7.4.2 Sicherheit 7.4.3 Anforderungen für Kühlsystemtest 7.4.4 Inspektion und Reinigung	33 35 35 38 39 40 40 44 44 44 44 44 44 44
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung 7.4.2 Sicherheit 7.4.3 Anforderungen für Kühlsystemtest 7.4.4 Inspektion und Reinigung 7.5 Kupplung	33 33 33 33 33 34 44 44 44 44 44 44 44 4
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung 7.4.2 Sicherheit 7.4.3 Anforderungen für Kühlsystemtest 7.4.4 Inspektion und Reinigung 7.5 Kupplung 7.5.1 Einleitung	3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4;
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente. 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung. 7.4.2 Sicherheit 7.4.3 Anforderungen für Kühlsystemtest 7.4.4 Inspektion und Reinigung 7.5 Kupplung 7.5.1 Einleitung. 7.5.2 Sicherheit 7.5.3 Anforderungen für Kupplungsprüfung	3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4;
	7.1 Empfohlener Wartungsplan 7.2 Lager 7.2.1 Einleitung 7.2.2 Sicherheit 7.2.3 Lager nachschmieren 7.3 Bedienelemente 7.3.1 Einleitung 7.3.2 Sicherheit 7.3.3 Verbindungstestanforderungen 7.3.4 Inspektion und Test 7.4 Kühlsystem 7.4.1 Einleitung 7.4.2 Sicherheit 7.4.3 Anforderungen für Kühlsystemtest 7.4.4 Inspektion und Reinigung 7.5 Kupplung 7.5.1 Einleitung 7.5.2 Sicherheit	33 33 33 33 33 40 40 42 42 42 43 44 44 44 44 44 44 44 44 44 44 44 44
	7.1 Empfohlener Wartungsplan 7.2 Lager	3; 3; 3; 3; 3; 4; 4; 4; 4; 4; 4; 4; 4; 4;

	7.6.3 Gleichrichtersystemkomponente: Anforderungen an Prüfung und Austausch	45
	7.6.4 Varistor testen und austauschen	45
	7.6.5 Dioden testen und austauschen	46
	7.7 Temperatursensoren	46
	7.7.1 Einleitung	46
	7.7.2 Sicherheit	48
	7.7.3 Testen der RTD-Temperatursensoren	48
	7.7.4 Testen der PTC-Temperatursensoren	48
	7.8 Wicklungen	49
	7.8.1 Hochspannung prüfen	49
	7.8.2 Einleitung	49
	7.8.3 Sicherheit	50
	7.8.4 Anforderungen	50
	7.8.5 Testen des elektrischen Widerstands der Wicklungen	50
	7.8.6 Prüfen des Isolierungswiderstands der Wicklungen	52
	7.8.7 Trocknen der Isolierung	52
8.	BAUTEILÜBERSICHTEN	55
	8.1 HC4 Einlager-Wechselstromgenerator	55
	8.2 HC4 Zweilager-Wechselstromgenerator	56
	8.3 HC5 Einlager-Wechselstromgenerator	57
	8.4 HC5 Zweilager-Wechselstromgenerator	58
	8.5 HC6 Einlager-Wechselstromgenerator	59
	8.6 HC6 Zweilager-Wechselstromgenerator	60
	8.7 HC Teile und Befestigungen	61
9.	TECHNISCHE DATEN	63
	9.1 HC Wicklungswiderstände	63
10.	SERVICE-TEILE	65
	10.1 Ersatzteilbestellungen	65
	10.2 Kundendienst	65
	10.3 Ersatzteilempfehlungen	65
	10.4 Schmiermittel Klüber Asonic GHY72	67
11.	ENTSORGUNG	69
	11.1 Recyclingfähiges Material	69
	11.2 Sonderabfall	69
	11.3 Restabfall	69

Inhaltsverzeichnis 07-2019

Leerseite

1 Vorwort

1.1 Über dieses Handbuch

Dieses Handbuch enthält Hinweise und Anleitungen für die Aufstellung, Wartung und Instandhaltung des Generators. Dieses Handbuch enthält keine Anweisungen für Service und Wartung des Generators. Nähere Informationen erhalten Sie beim CGT-Kundendienst

Vor Inbetriebsetzung des Generators sollten Sie dieses Handbuch aufmerksam gelesen haben. Stellen Sie sicher, dass alle mit der Arbeit an der Anlage beauftragten Personen jederzeit auf dieses Handbuch und die mitgelieferte Zusatzdokumentation zugreifen können. Bei nicht bestimmungsgemäßem Gebrauch der Anlage und Nichtbeachtung der Bedienhinweise sowie bei Verwendung von unzulässigen Ersatzteilen können Sie den Anspruch auf Gewährleistung für das Produkt verlieren, und es besteht möglicherweise Unfallgefahr.

Dieses Handbuch ist wesentlicher Bestandteil des Generators. Stellen Sie sicher, dass dieses Handbuch den Anwendern über die gesamte Lebensdauer des Generators hinweg zur Verfügung steht

Dieses Handbuch wendet sich an Fachleute mit einer abgeschlossenen elektrischen bzw. mechanischen Ausbildung, die bereits über entsprechende Vorkenntnisse und die notwendige Erfahrung mit Generatorausrüstungen dieser Art verfügen. Im Zweifelsfall sollten Sie jedoch einen Experten konsultieren, oder wenden Sie sich an die für Sie zuständige Niederlassung von Cummins Generator Technologies.

HINWEIS

Die Informationen in diesem Handbuch waren zum Zeitpunkt der Veröffentlichung korrekt. Durch unsere kontinuierliche Verbesserungspolitik kann es jedoch zu Abweichungen kommen. Den neuesten Dokumentationsstand finden Sie unter www.stamford-avk.com.

1. Vorwort 07-2019

Leerseite

2 Sicherheitsmaßnahmen

2.1 Sicherheitshinweise und verwendete Symbole

In diesem Handbuch werden die Begriffe "Gefahr", "Achtung" und "Vorsicht" verwendet, um auf Gefahrenquellen und mögliche Folgen hinzuweisen bzw. Hinweise zur Vermeidung von Verletzungen zu geben. Mit dem Begriff "Hinweis" werden wichtige oder kritische Anweisungen gekennzeichnet.

▲ GEFAHR

"Gefahr" bezeichnet eine Gefahrensituation, die bei Nichtvermeidung zum Tod oder schweren Personenschäden FÜHRT.

ACHTUNG

"Achtung" bezeichnet eine Gefahrensituation, die bei Nichtvermeidung zum Tod oder schweren Personenschäden führen KANN.

⚠ VORSICHT

"Vorsicht" bezeichnet eine Gefahrensituation, die bei Nichtvermeidung zu leichten oder mittelschweren Personenschäden führen KANN.

HINWEIS

"Hinweis" bezeichnet Verfahrens- oder Vorgehensweisen, die Sachschäden zur Folge haben können, oder wird verwendet, um die Aufmerksamkeit auf zusätzliche Informationen und Erläuterungen zu lenken.

2.2 Allgemeine Hinweise

HINWEIS

Diese Sicherheitshinweise stellen allgemeingültige Leitlinien dar und ergänzen die geltenden rechtlichen Bestimmungen und Vorschriften sowie die eigenen Sicherheitsmaßgaben.

2.3 Anforderungen an die Mitarbeiter

Wartungs- und Instandhaltungsarbeiten dürfen nur von ausgebildeten Fachleuten durchgeführt werden, die über die entsprechende Erfahrung verfügen und mit den Abläufen und der Ausrüstung vertraut sind.

2.4 Risikobewertung

Cummins hat für dieses Produkt eine Risikobewertung durchgeführt. Um alle Risiken für das Personal einschätzen zu können, muss jedoch eine eigene Risikobewertung beim Benutzer bzw. beim Betreiberunternehmen durchgeführt werden. Alle betroffenen Anwender sind über die ermittelten Gefahren zu belehren. Während des Betriebs ist der Zugang zum Aggregat/Generatorsatz auf Personen zu beschränken, die entsprechend eingewiesen wurden.

2. Sicherheitsmaßnahmen 07-2019

2.5 Persönliche Schutzausrüstung (PSA)

Alle Personen, die mit der Bedienung, Wartung und Instandhaltung der Anlage betraut sind oder Arbeiten in der Nähe des Generatorsatzes durchführen, müssen eine geeignete persönliche Schutzausrüstung (PSA) tragen.

Empfohlene PSA:

- · Schutzbrille und Gehörschutz
- · Kopf- und Gesichtsschutz
- Sicherheitsschuhe
- Arbeitsanzüge zum Schutz von Unterarmen und Beinen

Stellen Sie sicher, dass alle Personen über die Erste-Hilfe-Maßnahmen im Notfall unterrichtet sind.

2.6 Geräuschemission

ACHTUNG

Geräuschemission

Geräuschemissionen eines laufenden Generators können das Gehör ernsthaft und bleibend schädigen.

Tragen Sie eine geeignete Persönliche Schutzausrüstung (PSA), um Verletzungen vorzubeugen.

Der A-bewertete maximale Schalldruckpegel kann 109 dB(A) erreichen. Für anwendungsspezifische Einzelheiten wenden Sie sich bitte an Ihren Händler.

2.7 Elektrische Ausrüstung

▲ GEFAHR

Spannungsführende elektrische Leiter

Spannungsführende elektrische Leiter können zu schweren Verletzungen durch Stromschlag und Verbrennungen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über elektrischen Leitern entfernen.

Bei nicht sachgemäßer Bedienung können von der elektrischen Ausrüstung Gefahren ausgehen. Alle Installations-, Wartungs- und Instandhaltungsarbeiten am Generator sind stets entsprechend diesem Handbuch durchzuführen. Arbeiten an elektrischen Leitungen sind nach den örtlich bzw. landesspezifisch für die entsprechende Spannung geltenden elektrischen Sicherheitsbestimmungen sowie den am Standort geltenden Sicherheitsvorschriften durchzuführen. Verwenden Sie ausschließlich Originalersatzteile.

2.8 Sicherheitsverriegelungen/Kennzeichnung

ACHTUNG

Wiedereinschalten der Energieversorgung

Ein unbeabsichtigtes Wiedereinschalten der Energieversorgung bei Wartungs- und Instandhaltungsarbeiten kann zu schweren Verletzungen und Tod durch Stromschlag, Verbrennungen, Quetschen, Abschneiden oder Fangen führen.

Zur Vermeidung von Unfällen Generatorsatz vor Beginn von Wartungs- und Instandhaltungsarbeiten zur Sicherheit entsprechend verriegeln und kennzeichnen, damit dieser von der Energieversorgung getrennt bleibt. Sicherheitsverriegelung/-kennzeichnung nicht unwirksam machen oder umgehen.

2.9 Starkes Magnetfeld

ACHTUNG

Starkes Magnetfeld

Das von einem Dauermagnetgenerator (PMG) oder einem Erregerverstärkungssystem (EBS) erzeugte starke Magnetfeld kann durch Störbeeinflussung medizinischer Implantate schwere Verletzungen oder den Tod hervorrufen.

Träger medizinischer Implantate sollen nicht in der Nähe eines PMG oder EBS arbeiten.

2.10 Heben

▲ GEFAHR

Herunterfallende mechanische Bauteile

Herunterfallende mechanische Bauteile können zu schweren Verletzungen oder Tod durch Stoß, Quetschen, Abschneiden oder Fangen führen.

Stellen Sie vor dem Anheben Folgendes sicher, um Verletzungen zu vermeiden:

- Prüfen Sie Tragkraft, Zustand und Befestigung des verwendeten Hebezeugs (Kran, Hebezüge und Hydraulikheber einschließlich Aufnahmevorrichtungen zur Verankerung, Befestigung oder Abstützung des Geräts).
- Prüfen Sie Tragkraft, Zustand und Befestigung der verwendeten Anschlagmittel (Haken, Schlingen, Anschlagmittelzubehör wie Schäkel und Transportösen).
- Prüfen Sie Tragkraft, Zustand und Befestigung der Anschlagpunkte an der anzuhebenden Last.
- Überprüfen Sie das Gewicht, die Vollständigkeit und Stabilität (z. B. unsymmetrischer oder verlagerter Schwerpunkt) der anzuhebenden Last

ACHTUNG

Herunterfallende mechanische Bauteile

Herunterfallende mechanische Bauteile können zu schweren Verletzungen oder Tod durch Stoß, Quetschen, Abschneiden oder Fangen führen.

Stellen Sie vor Anheben des Generators Folgendes sicher, um Verletzungen zu vermeiden:

- Komplettes Stromaggregat nicht an den Anschlagpunkten des Generators anheben.
- · Wechselstromgenerator beim Anheben waagerecht halten.
- Bei Einlager-Wechselstromgeneratoren Transportsicherungen an der Antriebs- und Nichtsantriebsseite anbringen, damit der Hauptrotor nicht herausfällt.

2. Sicherheitsmaßnahmen 07-2019

Entfernen Sie nicht den an einem der Anschlagpunkte angebrachten Aufkleber für das Heben des Generators

2.11 Generator-Arbeitsbereiche

ACHTUNG

Herausgeschleuderte Generatorteile

Bei einem Totalausfall herausgeschleuderte Generatorteile können zu schweren Verletzungen oder Tod durch Stoß, Abschneiden oder Durchstich führen.

Zur Vermeidung von Verletzungen Folgendes beachten:

- · Halten Sie sich bei laufendem Generator vom Luftein- bzw. -auslass fern.
- Bringen Sie keine Bedienelemente in der Nähe des Luftein- bzw. -auslasses an.
- Vermeiden Sie eine Überhitzung des Generators, indem Sie ihn nicht außerhalb der auf dem Typenschild angegebenen Betriebsgrenzen betreiben.
- · Generator nicht überlasten.
- · Generator nicht mit übermäßigen Vibrationen betreiben.
- Parallel betriebene Generatoren nicht über die zulässigen Betriebsgrenzen hinaus synchronisieren.

Tragen Sie bei Arbeiten in den schraffiert dargestellten Bereichen oder in direkter Flucht mit Lufteinlässen bzw. -auslässen stets die entsprechende PSA.

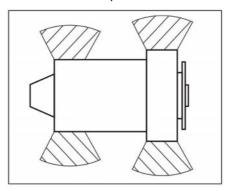


ABBILDUNG 1. SCHRAFFIERTE BEREICHE

Stellen Sie sicher, dass dieser Punkt bei Ihrer Risikobewertung Beachtung findet.

2.12 Gefahrenaufkleber

⚠ ACHTUNG

Entfernte Schutzabdeckung

Bei entfernter Schutzabdeckung besteht eine Gefährdung, die zu schweren Verletzungen oder Tod führen kann.

Zur Vermeidung von Verletzungen Folgendes beachten:

- Bringen Sie Sicherheitshinweise an den auf der Rückseite des mitgelieferten Aufkleberbogens angegebenen Stellen an.
- Beachten Sie die Sicherheitshinweise.
- Sehen Sie in der Wartungsanleitung nach, bevor Sie Schutzabdeckungen entfernen.

07-2019 2. Sicherheitsmaßnahmen

Der Hersteller des Stromaggregats ist für die Anbringung der mit dem Generator gelieferten selbstklebenden Gefahrenschilder verantwortlich.

Tauschen Sie fehlende, beschädigte oder überstrichene Aufkleber aus.

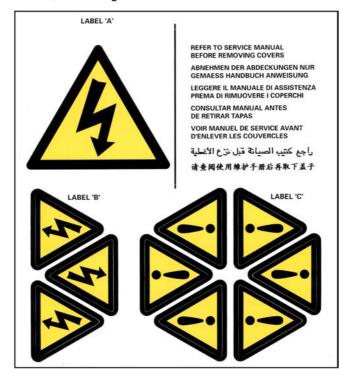


ABBILDUNG 2. GEFAHRENAUFKLEBER

2. Sicherheitsmaßnahmen 07-2019

Leerseite

3 Sicherheitsrichtlinien und Normen

STAMFORD Wechselstromgeneratoren entsprechenden den europäischen Sicherheitsrichtlinien sowie den nationalen und internationalen Normvorschriften für Generatoren. Der Wechselstromgenerator darf nur norm- und bestimmungsgemäß innerhalb der auf dem Typenschild angegebenen Grenzwerte betrieben werden.

Schiffsaggregate entsprechen den Anforderungen aller großen Klassifikationsgesellschaften.

Dieses Handbuch enthält Beispielvorlagen für die Erklärung. Die Wechselstromgeneratoren werden mit einer Erklärung geliefert, in der die Produktbezeichnung und die eindeutige Seriennummer genannt sind.

3.1 Niederspannungsrichtlinie: Konformitätserklärung

EU DECLARATION OF CONFORMITY Generator Technologies

This synchronous A.C. generator is designed for incorporation into an electricity generating-set and fulfils all the relevant provisions of the following EU Directive(s) when installed in accordance with the installation instructions contained in the product documentation:

2014/35/EU Low Voltage Directive

2014/30/EU The Electromagnetic Compatibility (EMC) Directive

2011/65/EU Restriction on Hazardous Substances in Electrical and Electronic

Equipment (RoHS) Directive

2015/863 Delegated Directive amending Annex II of 2011/65/EU and that the standards and/or technical specifications referenced below have been applied:

EN 61000-6-2:2005 Electromagnetic compatibility (EMC). Generic standards – Part 6-2:

Immunity for industrial environments

EN 61000-6-4:2007+A1:2011 Electromagnetic compatibility (EMC). Generic standards - Part 6-4:

Emission standard for industrial environments

EN ISO 12100:2010 Safety of machinery - General principles for design - Risk

assessment and risk reduction

EN 60034-1:2010 Rotating electrical machines - Part 1: Rating and performance
BS ISO 8528-3:2005 Reciprocating internal combustion engine driven alternating current

generating sets - Part 3: Alternating current generators for generating

sets

BS 5000-3:2006 Rotating electrical machines of particular types or for particular

applications - Part 3: Generators to be driven by reciprocating internal

combustion engines - Requirements for resistance to vibration Technical documentation for the assessment of electrical and

electronic products with the respect to the restriction of hazardous

substances

This declaration has been issued under the sole responsibility of the manufacturer. The object of this Declaration is in conformity with the relevant Union harmonization Legislation.

The name and address of authorised representative, authorised to compile the relevant technical documentation, is the Company Secretary, Cummins Generator Technologies Romania, B-dul Decebal Nr. 116A 200746 Craiova Dolj, Romania.

Signed

EN 50581:2012

Name, Title and Address: Keyan J Simon

Global Technical Director

Cummins Generator Technologies Romania

B-dul Decebal Nr.116A 200746, Craiova Dolj, ROMANIA

Date: 6th March 2019

Description Serial Number

Sheet 1 450-16383-G

Registered in England under Registration No. 441273., Cummins Generator Technologies Ltd. Registered Office: Fountain Court, Lynch Wood, Peterborough, UK, PE2 6FZ

ABBILDUNG 3. KONFORMITÄTSERKLÄRUNG - BLATT 1

EU DECLARATION OF CONFORMITY

The A.C. Generator utilizes hazardous material exemptions as detailed in Annex III of EU Directive 2011/65/EU

Products carrying the following descriptions are considered to be out of scope of RoHS Directive 2011/65/EU, intended to be installed in Large Scale Fixed Installations and for installation into a pre-defined and dedicated location, installed and de-installed by professionals:

LVI80*

LVSI80*

DSG 99*

DSG 114*

DSG 125*

DSG 144*

Where "*" represents any combination of letters and characters completing the specific description of the product

Sheet 2 450-16383-G

Registered in England under Registration No. 441273., Cummins Generator Technologies Ltd. Registered Office: Fountain Court, Lynch Wood, Peterborough, UK, PE2 6FZ

ABBILDUNG 4. KONFORMITÄTSERKLÄRUNG - BLATT 2

3.2 Maschinenrichtlinie: Einbauerklärung

2006/42/EC MACHINERY DIRECTIVE DECLARATION OF INCORPORATION OF PARTLY COMPLETED MACHINERY

Function: Synchronous A.C. generator designed for incorporation into an electricity generating-set.

The partly completed machinery supplied with this declaration:

- Is designed and constructed solely as a non-functional component to be incorporated into a machine requiring completion.
- O Is designed to comply with the provisions of the following EU Directives so far as their level of build will allow:

2014/30/EU The Electromagnetic Compataibility (EMC) Directive

2014/35/EU Low Voltage Directive

2011/65/EU Restriction on Hazardous Substances in Electrical and Electronic

Equipment (RoHS) Directive

2015/863 Delegated Directive amending Annex II of 2011/65/EU

- Must not be put into sevice within the European Community ("EC") until the final machinery into which it is to be incorporated has been declared in conformity with the Machinery Directive and all other applicable EC Directives.
- Is designed and constructed to comply with the essential health and safety requirements of the Machinery Directive 2006/42/EC listed on sheet 2 of this Declaration.

The relevant technical documentation is compiled in accordance with the provisions of part B of Annex VII of the Machinery Directive. All relevant information about the partly completed machinery will be provided, in writing, on a reasoned request by the appropriate national authority to its authorized representative. The name and address of authorised representative, authorised to compile the relevant technical documentation, is the Company Secretary, Cummins Generator Technologies Romania, B-dul Decebal Nr. 116A 200746 Craiova Dolj, Romania

The undersigned representing the manufacturer:

Signed:

Date: 6th March 2019

Name, Title and Address:

Kevan J Simon

Global Technical Director

Cummins Generator Technologies Romania

B-dul Decebal Nr.116A 200746, Craiova Dolj, ROMANIA

Description

Serial Number

Sheet 1

450-16388-G

Registered in England under Registration No. 441273., Cummins Generator Technologies Ltd. Registered Office: Fountain Court, Lynch Wood, Peterborough, UK, PE2 6FZ

ABBILDUNG 5. EINBAUERKLÄRUNG - BLATT 1

2006/42/EC MACHINERY DIRECTIVE DECLARATION OF INCORPORATION OF PARTLY COMPLETED MACHINERY

ESSENTIAL HEALTH AND SAFETY REQUIREMENTS RELATING TO THE DESIGN AND CONSTRUCTION OF PARTLY COMPLETED MACHINERY

1.1 General Remarks

- 1.1.2: Principles of safety integration
- 1.1.3: Materials and products
- 1.1.5: Design of machinery to facilitate its handling

1.3 Protection Against Mechanical Hazards

- 1.3.1: Risk of loss of stability
- 1.3.2 : Risk of break-up during operation
- . 1.3.3 : Risks due to falling or ejected objects
- 1.3.4: Risks due to surfaces, edges or angles
- 1.3.7: Risks related to moving parts
- 1.3.8.1 : Moving transmission parts

1.4 Guarding*

- 1.4.1 : Guards General requirements*
- 1.4.2.1 : Fixed guards*

1.5 Other Hazards

- . 1.5.2 : Static electricity
- 1.5.3: Energy supply other than electric
- . 1.5.4 : Errors of fitting
- 1.5.6 : Fire
- 1.5.13: Emmisions of hazardous materials and substances

1.7 Information

- . 1.7.1: Information and warnings on the machinery
- 1.7.4: Instructions

LEGEND

- Essential Health and Safety Requirements not shown are not considered applicable for this Partly Completed Machinery or must be fulfilled by the assembler of the Machinery.
- Essential Health and Safety
 Requirements shown are considered
 applicable for this Partly Completed
 Machinery and have been fulfilled by the
 manufacturer to the extent possible,
 subject to the build requirements of the
 Machinery assembler, the information
 contained in the assembly instructions
 and Cummins bulletins.
- 3 . * Customers may request Partly Completed Machinery without some or all guarding attached. In these cases section 1.4 Guarding does not apply and the Essential Health and Safety Requirements for guarding must be fulfilled by the assembler of the Machinery

The A.C. Generator utilizes hazardous material exemptions as detailed in Annex III of EU Directive 2011/65/EU.

Products carrying the following descriptions are considered to be out of scope of RoHS Directive 2011/65/EU, intended to be installed in Large Scale Fixed Installations and for installation into a pre-defined and dedicated location, installed and de-installed by professionals:

LVI80*

LVSI80*

DSG 99*

DSG 114*

DSG 125*

DSG 144*

Where "*" represents any combination of letters and characters completing the specific description of the product.

Sheet 2

450-16388-G

Registered in England under Registration No. 441273., Cummins Generator Technologies Ltd. Registered Office: Fountain Court, Lynch Wood, Peterborough, UK, PE2 6FZ

ABBILDUNG 6. EINBAUERKLÄRUNG - BLATT 2

3.3 Zusätzliche Angaben zur EMV-Verträglichkeit

Alle STAMFORD-Wechselstromgeneratoren sind so ausgelegt, dass sie die Normen für EMV-Emissionen und Störfestigkeit in Industriebereichen einhalten. Bei Einbau des Wechselstromgenerators im Wohn-, Gewerbe- und Leichtindustrie-Bereich kann zusätzliche Ausrüstung erforderlich sein.

Der Generatorträger ist am Aufstellungsort nach den Erdungsvorschriften mit einem entsprechenden Erdungsschutzleiter mit vorgeschriebener Mindestleiterlänge anzuschließen

Einbau, Wartung und Instandhaltung dürfen ausschließlich durch entsprechend ausgebildete Personen erfolgen, denen die Anforderungen der einschlägigen EU-Richtlinien bekannt und bewusst sind

HINWEIS

Cummins Generator Technologies übernimmt keine Haftung für die EMV-Verträglichkeit bei Verwendung nicht autorisierter Teile, die nicht die Marke STAMFORD besitzen, im Rahmen der Wartung und Instandhaltung.

3.4 Zusätzliche Angaben zur CSA-Konformität

Um konform zu den Vorschriften der CSA (Canadian Standards Association) zu sein, müssen alle externen Verdrahtungen und Komponenten auf die auf dem Typenschildaufkleber angegebene Nennspannung des Wechselstromgenerators ausgelegt sein.

4 Einleitung

4.1 Allgemeine Beschreibung

Bei den Generatoren der Baureihe HC handelt es sich um bürstenlose Drehfeldgeneratoren, lieferbar bis 690 V, 50 Hz (1.000 min-1, 6-polig bzw. 1.500 min-1, 4-polig) oder 60 Hz (1.200 min-1, 6-polig bzw. 1.800 min-1, 4-polig), die dem Britischen Standard BS 5000, Teil 3 und anderen internationalen Normen entsprechen.

Die Generatoren der Baureihe HC sind selbsterregte Generatoren, bei denen die Erregungsspannung über Hauptausgangswicklungen abgezapft wird, oder separat erregte Generatoren, wobei ein PMG (Permanent Magnet Generator) die Erregerspannung bereitstellt.

4.2 Name des Wechselstromgenerators

TABELLE 1. NAMENSFORMAT DES HC-WECHSELSTROMGENERATORS

Beispiel:	нс	5	-	НС	ı	5	3	4	С	2
	Wechselstromgenerator-Modell	(HC4, HC5, HC6)		Wechselstromgenerator-Typ (HC = Standard, HCK = Sondermodell, nicht HC6)	Anwendung (I = Industrie, M = Marine)	Rahmengröße (4, 5, 6)	Erregung (3 = mit PMG, 4 = ohne PMG)	Polzahl	Kernlänge (A, B, C usw.)	Anzahl der Lager (1 = NDE, 2 = DE & NDE)

4.3 Seriennummer

Am oberen Abschnitt des Rahmens ist eine eindeutige Seriennummer eingeprägt.

4.4 Typenschild

Auf dem fest angebrachten Typenschild sind die Soll-Betriebsparameter des Wechselstromgenerators angegeben.

4. Einleitung 07-2019

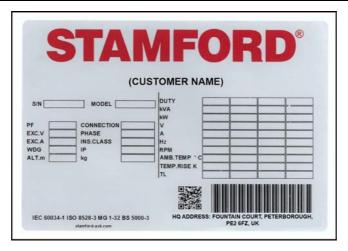


ABBILDUNG 7. ALLGEMEINES TYPENSCHILD FÜR STAMFORD-WECHSELSTROMGENERATOREN

4.5 Nachweis der Produktechtheit

STAMFORD-Produkte besitzen einen Echtheitsschutz in Form eines fälschungssicheren Hologramms auf dem Kontrollaufkleber. Prüfen Sie, ob beim Betrachten des Hologramms aus verschiedenen Blickwinkeln die Punkte um das STAMFORD-Logo herum sichtbar sind und hinter dem Logo das Wort "GENUINE" erscheint. Verwenden Sie bei schlechter Beleuchtung eine Taschenlampe, um das Echtheitshologramm zu prüfen. Prüfen Sie, ob es sich um einen Original-Wechselstromgenerator handelt, indem Sie den 7-stelligen Zeichencode des Hologramms unter www.stamford-avk.com/verify.

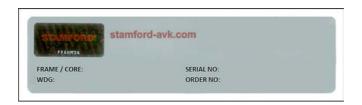


ABBILDUNG 8. KONTROLLAUFKLEBER

ABBILDUNG 9. BEI DRAUFSICHT AUF DAS 3D-HOLOGRAMM LINKS, RECHTS, OBEN UND UNTEN SICHTBARE PUNKTE

5 Einsatz des Wechselstromgenerators

Es liegt in der Verantwortung des Kunden, dafür zu sorgen, dass der Wechselstromgenerator für den beabsichtigten Einsatzzweck ausreichend dimensioniert ist.

5.1 Betriebsumgebung

Die Generatoren entsprechen standardmäßig dem Schutzgrad IP23. Die Schutzart IP23 ist allerdings nicht ausreichend, um den Generator ohne entsprechende Zusatzmaßnahmen im Freien zu betreiben.

TABELLE 2. UMGEBUNGSSPEZIFIKATION

Außentemperatur	-15 °C bis 40 °C (5 °F bis 104 °F)		
Relative Feuchtigkeit	< 70 %		
Höhe	< 1000 m		

Der Generator ist auf die Betriebsbedingungen in oben stehender Tabelle ausgelegt. Ein Betrieb jenseits dieser Werte ist generell möglich, wenn der Generator entsprechend ausgelegt ist. Das Leistungsschild enthält weitere Angaben. Falls sich die Betriebsumgebung des Generators nach dem Kauf geändert hat, können Sie das Leistungsschild vom Hersteller entsprechend ändern lassen.

5.2 Luftstrom

TABELLE 3. MINDESTLUFTSTROM UND MAXIMALE DRUCKDIFFERENZ

	Mindestluftstro	Maximale		
Wechselstromgenerat ormodell und Frequenz	50 Hz	60 Hz	Druckdifferenz zwischen Einlass und Auslass in mm (Zoll) Wassersäule	
HC4	0,8 (1700)	0,99 (2100)	6 (0,25)	
HC5	1,04 (2202)	1,31 (2780)	6 (0,25)	
HCK5	1,23 (2615)	1,59 (3366)	6 (0,25)	
HC6	1,62 (3420)	1,96 (4156)	6 (0,25)	

Stellen Sie sicher, dass Luftein- und -ausgänge bei Betrieb des Wechselstromgenerators nicht blockiert sind.

5.3 Luftverunreinigungen

Verunreinigungen wie Salz, Öl, Abgase, Chemikalien, Staub, Sand usw. reduzieren die Wirksamkeit der Isolierung und die Lebensdauer der Wicklungen. Sie sollten ggf. die Verwendung von Luftfiltern oder Einhausung zum Schutz des Wechselstromgenerators erwägen.

5.4 Luftfilter

Luftfilter halten Luftpartikel mit einer Größe über 5 μ zurück. Die Filter müssen abhängig von den Standortbedingungen regelmäßig gereinigt oder ausgetauscht werden. Filter häufiger überprüfen, bis sich ein geeigneter Wechselzyklus abzeichnet.

Wechselstromgeneratoren mit werksseitig eingebauten Filtern werden leistungsreduziert ausgeliefert, um dem verminderten Kühlluftstrom Rechnung zu tragen. Bei Nachrüstung von Filtern muss die Nennleistung des Wechselstromgenerators um 5 % reduziert werden.

Luftfilter filtern kein Wasser heraus. Ergreifen Sie zusätzliche Maßnahmen, um die Filter trocken zu halten. Feuchte Filter reduzieren den Luftstrom und führen dadurch zu einer Überhitzung des Wechselstromgenerators und in der Folge zu einem frühzeitigen Verschleiß der Isolierung.

5.5 Luftfeuchtigkeit

Die Wasseraufnahmefähigkeit von Luft ist temperaturabhängig. Sinkt die Lufttemperatur unter den Sättigungspunkt, kann es zu Taubildung auf den Wicklungen kommen, wodurch sich der elektrische Widerstand der Isolierung verringert. Bei feuchter Betriebsumgebung sind möglicherweise weitere Schutzmaßnahmen erforderlich, auch wenn der Wechselstromgenerator eingehaust ist. Auf Anfrage werden Antikondensationsheizungen geliefert.

5.6 Antikondensationsheizungen (Stillstandsheizungen)

GEFAHR

Spannungsführende elektrische Leiter

Spannungsführende elektrische Leiter können zu schweren Verletzungen durch Stromschlag und Verbrennungen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über elektrischen Leitern entfernen.

Die Stromversorgung für die Antikondensationsheizung kommt von einer separaten Quelle. Antikondensations- oder Stillstandsheizungen erhöhen die Lufttemperatur im Bereich der Wicklungen, um die Bildung von Schwitzwasser zu verhindern. Stillstandsheizungen solltem sich am besten bei Ausschalten des Wechselstromgenerators automatisch einschalten.

5.7 Gehäuse

Gehäuse dienen dem Schutz des Wechselstromgenerators vor schädlichen Umwelteinflüssen. Stellen Sie sicher, dass der Wechselstromgenerator mit sauberer Luft (frei von Feuchtigkeit und Verunreinigungen) mit einer Lufttemperatur unter der auf dem Leistungsschild angegebenen maximalen Betriebstemperatur versorgt wird.

Sorgen Sie außerdem dafür, dass um den Wechselstromgenerator herum genügend Freiraum gelassen wird, damit Wartungsarbeiten sicher und ungehindert durchgeführt werden können.

5.8 Vibrationen (Schwingungen)

Die Generatoren können Schwingungen von Generatorsätzen gemäß ISO 8528-9 und BS 5000-3 widerstehen (wobei ISO 8528 für Breitbandmessungen und BS 5000 für die am Generatorsatz vorherrschenden Schwingungsfrequenzen gilt).

HINWEIS

Eine Überschreitung der oben genannten Spezifikationen wirkt sich nachteilig auf die Lebensdauer der Lager und anderer Komponenten aus und kann bewirken, dass die Garantie für den Wechselstromgenerator verfällt.

HINWEIS

Der Klemmenkasten ist so ausgelegt, dass er die festen Busschienen oder Klemmen, Transformatoren, Lastkabel und die Zusatzklemmenkasten stützt. Zusätzliches Gewicht kann zu übermäßigen Vibrationen und so zum Ausfall des Klemmenkastengehäuses und der Montagevorrichtung führen. Weitere Informationen zum Anschluss der Lastkabel an den Klemmenkasten finden Sie in der Installationsanleitung. Wenden Sie sich an CGT, falls Sie dem Klemmenkasten zusätzliches Gewicht hinzufügen wollen.

5.8.1 Definition nach BS 5000-3

Wechselstromgeneratoren müssen dauerhaft Schwingungen mit Amplituden von 0,25 mm zwischen 5 Hz und 8 Hz und Geschwindigkeiten von 9,0 mm/s Effektivwert zwischen 8 Hz und 200 Hz bei Direktmessung am Rahmen oder Hauptgehäuse des Generators widerstehen können. Diese Grenzwerte gelten nur für die vorherrschende Schwingungsfrequenz einer komplexen Wellenform.

5.8.2 Definition nach ISO 8528-9

ISO 8528-9 bezieht sich auf ein Breitband von Frequenzen, und zwar zwischen 10 und 1000 Hz. Die folgende Tabelle ist ein Auszug aus der ISO 8528-9 (Tabelle C.1, Wert 1). Diese vereinfachte Tabelle enthält die Schwingungsgrenzwerte nach kVA-Bereich und die Drehzahl für einen akzeptablen Generatorsatzbetrieb.

5.8.3 Schwingungsfrequenzen

Der Wechselstromgenerator erzeugt hauptsächlich folgende Schwingungsfrequenzen:

- 6-polig, 1000 U/min, 16¾ Hz
- 6-polig, 1200 U/min, 20 Hz
- 4-polig, 1500 U/min, 25 Hz
- 4-polig, 1800 U/min, 30 Hz

Die vom Motor in den Wechselstromgenerator eingeleiteten Schwingungen sind komplex. Es liegt in der Verantwortung des Wechselstromgeneratorsatzherstellers abzusichern, dass durch Ausrichtung und Steifigkeit von Grundplatte und Befestigungsteilen die Schwingungsgrenzwerte gemäß BS 5000 Teil 3 und ISO 8528 Teil 9 nicht überschritten werden.

5.8.4 Linearschwingungsgrenzen

TABELLE 4. MESSUNGEN DES LINEARSCHWINGUNGSPEGEL AM HC GENERATOR

Motordrehzahl (min ⁻¹)	Ausgangsleistu ng (kVA)	Schwingungs- verschiebung RMS (mm)	Schwingungs- geschwindigkeit RMS (mm/s)	Schwingungs- beschleunigung RMS (mm/s²)	
1300 ≤ U/min < 2000	250 < S	0,32	20	13	
720 ≤ U/min < 1300	250 < S ≤ 1250	0,32	20	13	
Hinweis: Als 'Breitband' wird der Frequenzbereich von 10 Hz bis 1000 Hz angenomme.					

5.8.5 Linearschwingungsüberwachung

Wir empfehlen, die Schwingungen mit einem Schwingungsmessgerät an allen 12 unten gezeigten Stellen zu überprüfen. Prüfen Sie, ob die Schwingungen des Stromaggregats die angegebenen Sollgrenzen einhalten. Überschreiten die Schwingungen diese Grenzen, sollte die Vibrationsursache vom Hersteller des Generatorsatzes festgestellt und behoben werden. Dazu misst der Errichter des Stromaggregats am besten Anfangswerte, die dann dem Anwender als Referenz für regelmäßige Schwingungsmessungen im Rahmen der planmäßigen Wartung dienen, um mögliche Verschlechterungen zu erkennen.

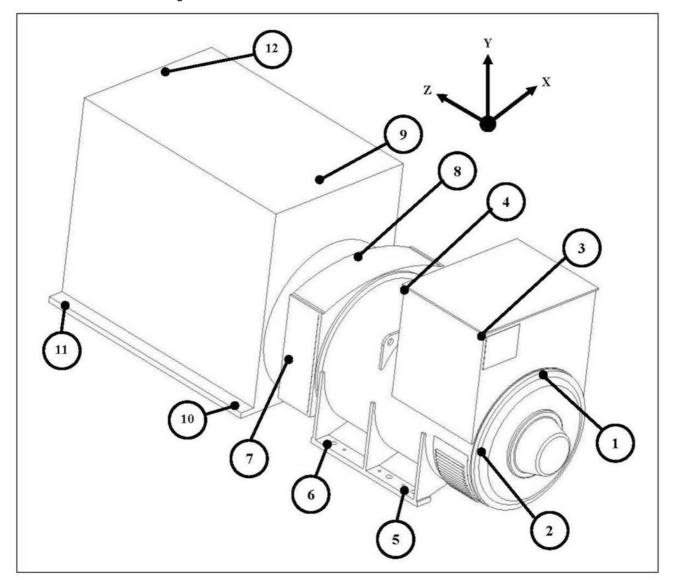


ABBILDUNG 10. POSITIONEN FÜR DIE SCHWINGUNGSMESSUNG

5.8.6 Übermäßige Vibration

ACHTUNG

Herausgeschleuderte Generatorteile

Bei einem Totalausfall herausgeschleuderte Generatorteile können zu schweren Verletzungen oder Tod durch Stoß, Abschneiden oder Durchstich führen.

Zur Vermeidung von Verletzungen Folgendes beachten:

- · Halten Sie sich bei laufendem Generator vom Luftein- bzw. -auslass fern.
- Bringen Sie keine Bedienelemente in der Nähe des Luftein- bzw. -auslasses an.
- Vermeiden Sie eine Überhitzung des Generators, indem Sie ihn nicht außerhalb der auf dem Typenschild angegebenen Betriebsgrenzen betreiben.
- · Generator nicht überlasten.
- · Generator nicht mit übermäßigen Vibrationen betreiben.
- Parallel betriebene Generatoren nicht über die zulässigen Betriebsgrenzen hinaus synchronisieren.

Wenn die am Stromaggregat gemessenen Schwingungen die Grenzwerte nicht einhalten:

- 1. Erkundigen Sie sich beim Hersteller des Stromaggregats nach Möglichkeiten zur Schwingungsdämpfung auf ein akzeptables Maß.
- 2. Wenden Sie sich zur Beurteilung der Auswirkungen auf die Lebensdauer der Lager und des Wechselstromgenerator an Cummins Generator Technologies.

5.9 Lager

5.9.1 Gekapselte Lager

Überprüfen Sie lebensdauergeschmierte Lager regelmäßig gemäß dem empfohlenen Wartungsplan in diesem Handbuch. Überprüfen Sie auf Anzeichen von Verschleiß, Reibkorrosion und andere mangelhafte Zustände. Beschädigungen von Dichtungen, Schmiermittelleckagen oder Farbveränderungen der Lagerringe deuten darauf hin, dass das Lager ausgetauscht werden muss.

5.9.2 Nachschmierbare Lager

Alle Lagergehäuse sind über eine Schmierleitung mit einem externen Schmiernippel verbunden. Auf einem Etikett sind Typ und Menge des Schmiermittels sowie die erforderliche Nachschmierhäufigkeit angegeben. Bei dem empfohlenen Schmiermittel handelt es sich um ein synthetisches Hochleistungsverbundschmiermittel, das nicht mit Schmiermitteln mit anderer Zusammensetzung vermischt werden darf. Weitere Informationen finden Sie im Kapitel "Service und Wartung".

5.9.3 Lebensdauer von Lagern

Die Lebensdauer von Lagern wird von folgenden Faktoren beeinflusst:

- · Ungünstige Betriebsumgebung und Betriebsbedingungen
- Übermäßige Belastung durch Fluchtungsfehler im Generatorsatz
- Überschreitung der Schwingungsgrenzen gemäß BS 5000-3 und ISO 8528-9
- Lange Standzeiten des Generators (einschließlich Transport) in schwingungsbelasteter Umgebung können zu False-Brinelling-Verschleiß (Flachstellen an den Kugeln und Riefen in den Wälzbahnen) führen.
- Umgebungen mit hoher Luftfeuchtigkeit oder Nässe, die zu Korrosion und einer Verschlechterung des Schmiermittels durch Emulsionsbildung führen.

5.9.4 Überwachung des Lagerzustands

Wir empfehlen, den Zustand der Lager mit geeignetem Gerät zur Schwingungsüberwachung zu prüfen. Dazu werden am besten Anfangswerte gemessen und diese als Grundlage für die regelmäßige Überwachung der Lager verwendet, um mögliche Verschlechterungen zu erkennen. So kann der Austausch von Lagern in ausreichenden Abständen im Zuge der Wartung von Generatorsatz oder Motor eingeplant werden.

5.9.5 Lebenserwartung von Lagern

Die Hersteller von Wälzlagern wissen, dass die Lebensdauer von Lagern von Faktoren abhängt, die außerhalb der Kontrolle der Hersetller liegen. Anstatt Angaben über die Standzeit der Lager zu machen, werden daher auf Grundlage der Lebensdauer L10 von Lagern zweckmäßige Austauschintervalle und Schmiermittel angegeben sowie entsprechende Schmiermittel- und Lagerhersteller empfohlen.

Bei normalem Einsatz: Bei ordnungsgemäßer Wartung, Schwingungswerten innerhalb der Grenzen gemäß ISO 8528-9 und BS 5000-3 und einer Umgebungstemperatur von maximal 50 °C sollten die Lager planmäßig alle 30.000 Betriebsstunden ausgetauscht werden.

Bei Zweifeln hinsichtlich von Aspekten der Lagerlebensdauer eines STAMFORD-Generators wenden Sie sich an den nächsten autorisierten Lieferanten des Generators oder an Cummins Generator Technologies.

5.9.6 Standby-Anwendungen

Betreiben Sie Wechselstromgeneratoren in Standby-Anwendungen jede Woche für mindestens 10 Minuten ohne Last. Für Wechselstromgeneratoren mit schmierbaren Lagern schmieren Sie die Lager alle 6 Monate neu, unabhängig von der Anzahl der Gesamtbetriebsstunden.

6 Einbau in den Generatorsatz

6.1 Abmessungen des Wechselstromgenerators

Die Abmessungen sind dem für das Wechselstromgeneratormodell spezifischen Datenblatt zu entnehmen. Das Wechselstromgeneratormodell ist auf dem Typenschild angegeben.

HINWEIS

Datenblätter erhalten Sie unter www.Stamford-AvK.com

6.2 Anheben des Wechselstromgenerators

ACHTUNG

Herunterfallende mechanische Bauteile

Herunterfallende mechanische Bauteile können zu schweren Verletzungen oder Tod durch Stoß, Quetschen, Abschneiden oder Fangen führen.

Stellen Sie vor Anheben des Generators Folgendes sicher, um Verletzungen zu vermeiden:

- Komplettes Stromaggregat nicht an den Anschlagpunkten des Generators anheben.
- Wechselstromgenerator beim Anheben waagerecht halten.
- Bei Einlager-Wechselstromgeneratoren Transportsicherungen an der Antriebs- und Nichtsantriebsseite anbringen, damit der Hauptrotor nicht herausfällt.

Wechselstromgenerator mit Haken oder Schäkeln an den Anschlagpunkten (Ösen oder Augen) anheben. Ein Aufkleber im Bereich des Anschlagpunkts zeigt, wie der Generator richtig angehoben wird. Ausreichend lange Ketten und ggf. eine Traverse verwenden, um sicher zu stellen, dass die Ketten beim Anheben senkrecht hängen. Stellen Sie sicher, dass das verwendete Hebezeug eine für das auf dem Aufkleber angegebene Wechselstromgeneratorgewicht ausreichende Tragfähigkeit besitzt.

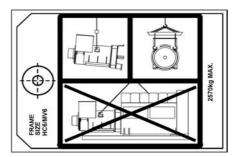


ABBILDUNG 11. AUFKLEBER FÜR DAS ANHEBEN

6.3 Lagerung

Den Wechselstromgenerator, wenn er nicht sofort zum Einsatz kommt, an einem sauberen, trockenen Ort vor Vibrationen geschützt lagern. Wir empfehlen die Verwendung einer Stillstandsheizung, falls verfügbar.

Wenn der Generator gedreht werden kann, den Rotor während der Einlagerung jeden Monat mindestens 6 Mal umdrehen.

6.3.1 Nach der Lagerung

Führen Sie nach einem Lagerzeitraum "Tests vor der Inbetriebnahme" aus, um den Zustand der Wicklungen festzustellen. Wenn die Wicklungen feucht sind oder der Isolationswiderstand gering ist, führen Sie eines der Trocknungsverfahren aus (siehe Kapitel 7 auf Seite 33).

Vor der Inbetriebnahme des Generators die Tabelle unten hinzuziehen.

TABELLE 5. LAGERUNG DES LAGERS

Lagertyp	Während der Einlagerung nicht gedreht	Während der Einlagerung gedreht	
Versiegelte(s) Lager	Wenn kürzer als 12 Monate eingelagert, den Generator in Betrieb nehmen.	Wenn kürzer als 24 Monate eingelagert, den Generator in Betrieb nehmen.	
	Wenn länger als 12 Monate eingelagert, das oder die Lager austauschen und den Generator dann in Betrieb nehmen.	Wenn länger als 24 Monate eingelagert, das oder die Lager austauschen und den Generator dann in Betrieb nehmen.	
Nachschmierbare Lager	Wenn kürzer als 12 Monate eingelagert, den Generator in Betrieb nehmen.	Wenn kürzer als 6 Monate eingelagert, den Generator in Betrieb nehmen.	
	Wenn länger als 12 Monate eingelagert, das oder die Lager austauschen und den Generator dann in Betrieb nehmen.	Wenn zwischen 6 und 24 Monate eingelagert, das oder die Lager im ersten Lauf nachschmieren und den Generator dann in Betrieb nehmen.	
		Wenn länger als 24 Monate eingelagert, das oder die Lager austauschen und den Generator dann in Betrieb nehmen.	

6.3.2 Anweisung zur Lagerung

Wenn ein Wechselstromgenerator steht, unabhängig davon, ob eingelagert oder anderweitig, kann er Umgebungsfaktoren ausgesetzt sein, wie beispielsweise Schwingungen, Feuchtigkeit, Temperatur und Luftverschmutzungen, die die Lager beeinträchtigen könnten.

Wenden Sie sich im Voraus an CGT, um weitere Anweisungen zu erhalten, falls der Wechselstromgenerator für längere Zeit stehen soll.

6.4 Verkuppeln des Generatorsatzes

ACHTUNG

Mechanisch bewegte Teile

Beim Verkuppeln des Generatorsatzes mechanisch bewegte Bauteile können zu schweren Verletzungen oder Tod durch Quetschen, Abschneiden oder Fangen führen.

Halten Sie beim Verkuppeln des Generatorsatzes Arme, Hände und Finger von den Kontaktflächen fern, um Verletzungen zu vermeiden.

Einwandfreie Funktion und lange Lebensdauer der Bauteile sind von der mechanischen Beanspruchung und Beschädigung des Wechselstromgenerators abhängig, die möglichst gering sein sollten. Bei der Verkupplung zu einem Stromaggregat können durch Fluchtungsfehler und Schwingungen bezüglich der Hauptantriebsmaschine mechanische Belastungen auftreten. Auch nimmt der Kühllüfter Schaden, wenn zum Drehen des Generatorläufers ein Hebel an den Lüfterflügeln angesetzt wird. Der Lüfter hält solchen Kräften nicht stand.

ABBILDUNG 12. DEN GENERATORLÄUFER NICHT MIT EINEM HEBEL DREHEN

Stromaggregate benötigen eine stabile, flache und durchgehende Grundplatte mit ausreichender Tragfähigkeit und stabilen Montageunterlagen, damit eine exakte Fluchtung von Motor und Generator erzielt werden kann. Die Höhe der Unterlagen darf maximal 0,25 mm bei Skid-Montage und 3 mm bei nicht höhenverstellbaren bzw. 10 mm bei höhenverstellbaren schwingungsdämpfenden Lagern betragen. Verwenden Sie zur Feinabstimmung Ausgleichsscheiben. Die Rotationsachsen des Wechselstromgeneratorrotors und der Motorausgangswelle müssen gleichachsig (radiale Ausrichtung) und senkrecht zur gleichen Ebene (winklige Ausrichtung) angeordnet sein. Die axiale Ausrichtung von Wechselstromgenerator und Motorkupplung muss innerhalb von 0,5 mm liegen, um eine thermische Ausdehnung zuzulassen, ohne dass eine ungewollte Axialbeanspruchung der Lager bei Betriebstemperatur entsteht.

Bei Durchbiegen der Kupplung kann es zu Vibrationen kommen. Der Wechselstromgenerator ist für ein maximales Biegemoment von 140 kgm (1000 lbs ft) für die Baugrößen 4 und 5 bzw. nicht über 275 kgm (2000 lbs ft) für Baugröße 6 ausgelegt. Fragen Sie das maximale Biegemoment des Motorflansches beim Hersteller nach.

Eine starre Kupplung von Wechselstromgenerator und Motor kann die Gesamtstabilität des Generatorsatzes erhöhen. Sowohl Ein- als auch Zweillager-Wechselstromgeneratoren können starr gekuppelt werden. Bei elastischer Kupplung muss der Hersteller des Generatorsatzes entsprechende Schutzvorrichtungen vorsehen.

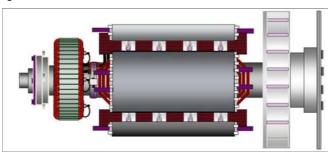


ABBILDUNG 13. ROTOR EINES EINLAGER-WECHSELSTROMGENERATORS, KUPPLUNGSSCHEIBEN MIT DER ANTRIEBSSEITIGEN KUPPLUNGSNABE VERSCHRAUBT (RECHTS)

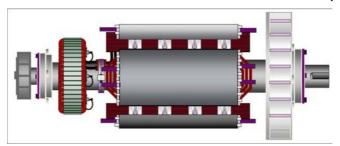


ABBILDUNG 14. ROTOR EINES ZWEILAGER-WECHSELSTROMGENERATORS, WELLE MIT PASSFEDERNUT ZUR ELASTISCHEN KUPPLUNG (RECHTS)

Zum Schutz gegen Rost bei Transport und Lagerung sind der Achsüberstand des Generatorträgers, die Rotorkupplungsplatten und die Wellenverlängerung mit Korrosionsschutzmittel konserviert. Dieses ist vor der Kopplung des Generatorsatzes zu entfernen.

6.5 Einlager-Generatoren

⚠ ACHTUNG

Herunterfallende mechanische Bauteile

Herunterfallende mechanische Bauteile können zu schweren Verletzungen oder Tod durch Stoß, Quetschen, Abschneiden oder Fangen führen.

Stellen Sie vor Anheben des Generators Folgendes sicher, um Verletzungen zu vermeiden:

- Komplettes Stromaggregat nicht an den Anschlagpunkten des Generators anheben.
- Wechselstromgenerator beim Anheben waagerecht halten.
- Bei Einlager-Wechselstromgeneratoren Transportsicherungen an der Antriebs- und Nichtsantriebsseite anbringen, damit der Hauptrotor nicht herausfällt.
- An der Antriebsseite die Transportsicherung entfernen, die den Läufer während des Transports fixiert.
- Luftauslassabdeckungen auf der Antriebsseite des Wechselstromgenerators abnehmen, um an die Kupplung und die Flanschschrauben zu gelangen.
- 3. Sicherstellen, dass die Kupplungsscheiben konzentrisch zum Adapter ausgerichtet sind.
- 4. Zwei Ausrichtungsstifte in den Schwungradbohrungen im Winkel von 180 Grad zueinander anbringen, um die Ausrichtung von Scheibe und Schwungrad zu unterstützen.
- 5. Den Wechselstromgenerator anheben und zum Motor bewegen, wobei der Motor manuell gedreht wird, um Scheiben und Schwungrad auszurichten.
- Die Ausrichtungsstifte in die Bohrungen der Kupplungsscheibe einsetzen und den Wechselstromgenerator zum Motor schieben, bis die Kupplungsscheiben an der Schwungradvorderseite anliegen.

HINWEIS

Wechselstromgenerator nicht an den Schrauben in den elastischen Scheiben zum Motor ziehen!

- 7. Die Adapterschrauben unter Verwendung von Hochlast-Unterlegscheiben unter den Köpfen anbringen. Die Adapterschrauben um den Adapter herum gleichmäßig anziehen.
- 8. Im Uhrzeigersinn bei jeder Schraube das Anzugsmoment prüfen, um sicherzustellen, dass alle Schrauben fest sitzen. Die vorgeschriebenen Anzugsmomente sind den Angaben des Motorherstellers zu entnehmen.
- 9. Die Ausrichtungsstifte entfernen. Die Kupplungsschrauben unter Verwendung von Hochlast-Unterlegscheiben unter den Köpfen anbringen.
- Kupplungsbefestigungsschrauben am Schwungrad in der Reihenfolge festziehen wie dargestellt in Abbildung 15 auf Seite 27.
- 11. Im Uhrzeigersinn bei jeder Schraube das Anziehmoment prüfen, um sicher zu stellen dass alle Schrauben fest sitzen.
- 12. Läuferfixierbügel wieder entfernen, sofern vorhanden.
- Alle Abdeckungen wieder anbringen.

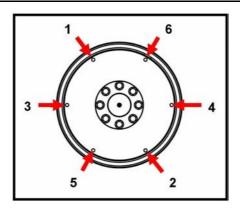
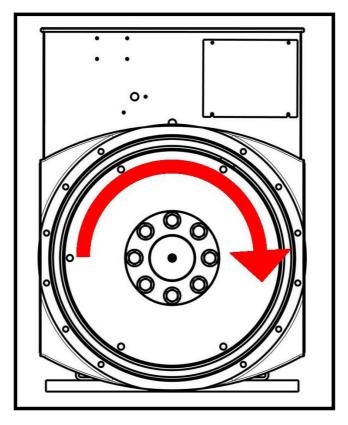


ABBILDUNG 15. ANZUGSREIHENFOLGE

6.6 Zweilager-Generatoren

Zur Vermeidung von Torsionseffekten wird für diese Motor-Wechselstromgenerator-Kombination eine elastische Kupplung empfohlen.


Bei Verwendung einer starren Kupplung muss die Ausrichtung der Passflächen durch Ansetzen des Wechselstromgenerators an den Motor überprüft werden. Stellfüße des Wechselstromgenerators falls erforderlich mit Abstimmscheiben unterfüttern.

6.7 Prüfungen vor dem Einschalten

Prüfen Sie vor dem Starten des Stromaggregats den Isolationswiderstand der Wicklungen und stellen Sie sicher, dass alle Verbindung fest und richtig sitzen. Stellen Sie sicher, dass der Luftweg des Generators frei von Hindernissen ist. Bringen Sie alle Abdeckungen wieder an.

6.8 Drehrichtung

Der Lüfter dreht vom Antriebsende des Wechselstromgenerators aus gesehen nach rechts (sofern nicht anders bei der Bestellung angegeben). Falls der Wechselstromgenerator nach links drehen muss, wenden Sie sich bitte an Cummins Generator Technologies.

ABBILDUNG 16. DREHRICHTUNG

6.9 Phasendrehung

Die Ausgangsleistung des Hauptständers besitzt die Phasenfolge U V W, wobei der Wechselstromgenerator von der Antriebsseite aus gesehen nach rechts dreht. Muss die Phasendrehung umgekehrt werden, sind die Ausgangskabel so wieder anzuschließen, dass eine UVW-Konfiguration entsteht. Fordern Sie hierfür bei Cummins Generator Technologies den entsprechenden Schaltplan an.

6.10 Spannung und Frequenz

Prüfen Sie, ob die für die Anwendung des Generatorsatzes benötigten Spannungs- und Frequenzwerte den Angaben auf dem Leistungsschild des Generators entsprechen. Eine genaue Anleitung für Einstellungen finden Sie im AVR-Handbuch.

6.11 Einstellung des automatischen Spannungsreglers (AVR)

Der AVR ist werksseitig darauf ausgelegt, dass vor dem ersten Einschalten Tests durchgeführt werden. Überprüfen Sie, ob die AVR-Einstellungen mit dem von Ihnen benötigten Ausgang kompatibel sind. Eine genaue Anleitung für die Einstellung der Spannung mit und ohne Last finden Sie im AVR-Handbuch.

6.12 Elektrische Anschlüsse

ACHTUNG

Unsachgemäße elektrische Installation und fehlerhafter Anlagenschutz

Eine unsachgemäße elektrische Installation und ein fehlerhafter Anlagenschutz können zu schweren Verletzungen oder Tod durch Stromschlag und Verbrennungen führen.

Um Verletzungen vorzubeugen, müssen Installateure ausgebildete Elektrofachkräfte sein und die Anforderungen der Aufsichtsbehörden und des örtlichen Energieversorgers sowie die Sicherheitsbestimmungen am Standort erfüllen.

HINWEIS

Der Klemmenkasten ist so ausgelegt, dass er die festen Busschienen oder Klemmen, Transformatoren, Lastkabel und die Zusatzklemmenkasten trägt. Eine zusätzliche Masse könnte eine übermäßige Schwingung verursachen und zum Ausfall des Klemmenkastengehäuses und der Befestigung führen. Wenden Sie sich an CGT, falls Sie dem Klemmenkasten eine zusätzliche Masse hinzufügen wollen. Zum Bohren oder Schneiden müssen die Tafeln abgenommen werden, damit keine Späne in den Anschlusskasten oder Wechselstromgenerator gelangen.

Fehlerstromkurven und Blindwiderstände des Wechselstromgenerators können bei Bedarf werkseitig nachgefragt werden, damit die erforderlichen Fehlerstrom- und/oder Leitungsschutzschalter berechnet werden können.

Vom Installateur ist zu überprüfen, ob der Generatorträger fest auf der Grundplatte des Generatorsatzes verankert und vorschriftsmäßig geerdet ist. Falls zwischen Generatorträger und Grundplatte schwingungsdämpfende Lager installiert sind, muss zwischen den schwingungsdämpfenden Lagern eine Erdungsbrücke mit einem ausreichend bemessenen Leitern gezogen werden.

Für den Anschluss der Lastkabel siehe die entsprechenden Stromlaufpläne. Die elektrischen Anschlüsse werden im Anschlusskasten hergestellt. Um standortspezifische Kabeleinführungen und verschraubungen zu ermöglichen, verfügt der Kasten über abnehmbare Tafeln. Nach der Verdrahtung den Anschlusskasten überprüfen, gegebenenfalls Schmutz mit einem Staubsauger entfernen und sicherstellen, dass keine innen liegenden Komponenten beschädigt wurden oder beeinträchtigt werden

Standardmäßig ist der Nullleiter des Wechselstromgenerators nicht an den Generatorträger angeschlossen. Falls erforderlich kann der Nullleiter an die Erdungsklemme im Anschlusskasten angeschlossen werden. Der Leitungsquerschnitt muss wenigstens die Hälfte des Phasenleiterquerschnitt betragen.

Lastkabel müssen in geeigneter Weise unterstützt werden, um enge Kabeleinführungsradien am Anschlusskasten zu vermeiden, an der Kabeleinführung mit einer Zugentlastung versehen sein und sich mindestens ±25 mm mit dem schwingungsgedämpft gelagerten Generatorsatz bewegen können, ohne dass die Kabel und die Lastanschlussklemmen des Wechselstromgenerators übermäßig beansprucht werden.

6.13 Netzanschluss: Stoßspannungen und Mikrounterbrechungen

Es sollten Vorkehrungen getroffen werden, um eine Beschädigung der Wechselstromgeneratorbauteile durch transiente Spannungen zu vermeiden, die aufgrund der angeschalteten Last und/oder durch das Verteilsystem entstehen.

Zur Ermittlung möglicher Risiken sollten alle Aspekte der geplanten Nutzung des Wechselstromgenerators in Betracht gezogen werden, und zwar insbesondere:

· Lasten mit Kenndaten, die zu großen Laständerungen führen.

- Lastenregelung durch Schaltvorrichtungen und Leistungsregelung mit Verfahren, die transiente Spannungsspitzen erzeugen können.
- Verteilsysteme, die durch Fremdeinflüsse beeinträchtigt werden können, z. B. Blitzschlag.
- Anwendungen im Parallelbetrieb mit einer Netzversorgung, bei der die Gefahr von Störungen durch Mikrounterbrechungen besteht.

Falls die Gefahr von Spannungsspitzen oder Mikro-Unterbrechungen für den Wechselstromgenerator besteht, müssen geeignete Schutzeinrichtungen in das Erzeugersystem aufgenommen werden, in der Regel mit Überspannungsschutz und Entstörgeräten, um Vorschriften und Installationsanforderungen zu erfüllen.

Der Überspannungsschutz muss die Spitzenspannung am Wechselstromgenerator von einem Einschaltstoß mit 5 μ s Anstiegszeit auf weniger als 1,25 x $\sqrt{2}$ x (2 x Nennausgangsspannung + 1000 V) reduzieren. Die beste Methode ist, Schutzvorrichtungen in der Nähe der Ausgangsklemmen anzubringen. Weitere Informationen erhalten Sie von Fachverbänden und den Anbietern spezieller Ausrüstung.

6.14 Variierende Lasten

Unter bestimmten Bedingungen können Lastabweichungen die Lebensdauer des Wechselstromgenerators reduzieren.

Identifizieren Sie alle möglichen Risiken, insbesondere:

- Hohe kapazitive Belastungen (z. B. Ausrüstung zur Blindleistungskompensation) können die Stabilität des Wechselstromgenerators beeinträchtigen und ein Polschlüpfen verursachen.
- Stufenweise Netzspannungsabweichung (z. B. Stufenschaltung).

Falls das Risiko variierender Lasten für den Wechselstromgenerator besteht, müssen geeignete Schutzvorrichtungen in das Erzeugersystem aufgenommen werden, beispielsweise ein Untererregungsschutz.

6.15 Synchronisierung

ACHTUNG

Herausgeschleuderte Generatorteile

Bei einem Totalausfall herausgeschleuderte Generatorteile können zu schweren Verletzungen oder Tod durch Stoß, Abschneiden oder Durchstich führen.

Zur Vermeidung von Verletzungen Folgendes beachten:

- · Halten Sie sich bei laufendem Generator vom Luftein- bzw. -auslass fern.
- Bringen Sie keine Bedienelemente in der Nähe des Luftein- bzw. -auslasses an.
- Vermeiden Sie eine Überhitzung des Generators, indem Sie ihn nicht außerhalb der auf dem Typenschild angegebenen Betriebsgrenzen betreiben.
- Generator nicht überlasten.
- · Generator nicht mit übermäßigen Vibrationen betreiben.
- Parallel betriebene Generatoren nicht über die zulässigen Betriebsgrenzen hinaus synchronisieren.

6.15.1 Parallelschalten bzw. Synchronisieren von Wechselstromgeneratoren

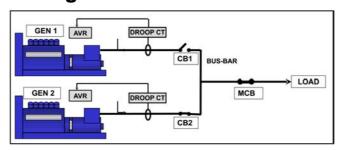


ABBILDUNG 17. PARALLELSCHALTEN BZW. SYNCHRONISIEREN VON WECHSELSTROMGENERATOREN

Der Stromtransformator für die quadratische Differenz (Droop CT) gibt ein zum Blindstrom proportionales Signal aus. Der AVR passt die Erregung an, um den Ausgleichsstrom zu reduzieren und zu ermöglichen, dass alle Wechselstromgeneratoren die Blindlast gemeinsam tragen. Ein werksseitig eingebauter Droop CT ist auf einen Spannungsabfall von 5 % bei einer Blindlast mit Vollleistung voreingestellt. Weitere Informationen über die Differenzanpassung finden Sie in dem im Lieferumfang enthaltenen AVR-Handbuch.

- Es sollte ein Synchronisationsschalter (CB1, CB2) verwendet werden, der bei seiner Betätigung kein "Kontaktprellen" verursacht.
- Der Synchronisationsschalter muss eine für den vollen Dauerlaststrom des Wechselstromgenerators ausreichende Nennleistung besitzen.
- Der Synchronisationsschalter muss den strengen Schließzyklen während der Synchronisation und den bei einer parallelen Fehlsynchronisation des Wechselstromgenerators erzeugten Strömen standhalten können.
- Die Schließzeit des Synchronisationsschalters muss über die Synchronisationsvorrichtung geregelt werden.
- Der Schalter muss auch unter Fehlerbedingungen wie z. B. Kurzschlüssen arbeiten können. Entsprechende Wechselstromgenerator-Datenblätter liegen vor.

HINWEIS

Zu einer Fehlerbedingung können auch andere Wechselstromgeneratoren oder das Netz/der Stromversorger beitragen.

Mögliche Synchronisationsmethoden sind automatische Synchronisation oder Kontrollsynchronisation. Eine manuelle Synchronisation wird nicht empfohlen. Die Einstellungen der Synchronisierungsvorrichtung sollten dafür sorgen, dass der Generator sanft schließt. Damit die Synchronisierungsvorrichtung das schaffen kann, muss die Phasensequenz den Parametern in der nachstehenden Tabelle entsprechen.

TABELLE 6. PARAMETER DER SYNCHRONISIERUNGSEINRICHTUNG

Spannungsdifferenz	+/- 0,5 %
Frequenzdifferenz	0,1 Hz/s
Phasenwinkel	+/- 10°
Einschaltzeit Schutzschalter	50 ms

Die Spannungsdifferenz beim Netzparallelbetrieb beträgt +/- 3 %.

Leerseite

7 Wartung und Instandhaltung

7.1 Empfohlener Wartungsplan

Lesen Sie den Abschnitt Sicherheitsmaßnahmen (<u>Kapitel 2 auf Seite 3</u>) in diesem Handbuch, bevor Sie Service- und Wartungsarbeiten unternehmen.

Eine Explosionsdarstellung der Komponenten sowie Informationen über die Befestigungen finden Sie im Abschnitt Teilebeschreibung (Kapitel 8 auf Seite 55).

Der empfohlene Wartungsplan zeigt die empfohlenen Wartungsarbeiten in den Tabellenzeilen für die einzelnen Unterbaugruppen des Wechselstromgenerators. Die Tabellenspalten beschreiben die Art der Wartungsarbeiten, ob der Wechselstromgenerator in Betrieb sein muss, sowie die Wartungsstufen. Die Wartungshäufigkeit ist in Betriebsstunden oder als Zeitintervall angegeben, abhängig davon, was früher liegt. Ein Kreuz (X) an den Schnittstellen aus Zeilen und Spalten gibt den Typ der Wartungsarbeit an, und wann sie durchzuführen ist. Ein Stern (*) kennzeichnet eine Wartungsarbeit, die nur bei Bedarf durchzuführen ist.

Alle Servicestufen aus dem empfohlenen Wartungsplan können direkt beim Cummins Generator Technologies Customer Service Department gekauft werden. Die Adressen unserer Service-Stützpunkte finden Sie unter www.stamford-avk.com,

- 1. Eine ordnungsgemäße Wartung und Reparatur sind unabdingbar für den zuverlässigen Betrieb Ihres Wechselstromgenerators und die Sicherheit aller Personen, die mit ihm in Kontakt kommen.
- 2. Diese Wartungsarbeiten sollen die Lebensdauer des Wechselstromgenerators verlängern, sie verändern, erweitern oder ändern jedoch nicht die vom Hersteller gebotenen Standardgarantiebedingungen und auch nicht Ihre Verpflichtungen im Rahmen dieser Garantie.
- 3. Die angegebenen Wartungsintervalle dienen nur als Anhaltspunkt. Sie wurden auf der Grundlage erarbeitet, dass der Wechselstromgenerator gemäß den Vorgaben des Herstellers installiert und betrieben wird. Falls sich der Wechselstromgenerator in einer ungünstigen oder unüblichen Umgebung befindet und/oder dort betrieben wird, können die Wartungsintervalle kürzer sein. Der Wechselstromgenerator muss zwischen den Wartungen überwacht werden, um mögliche Ausfälle, Zeichen für eine fehlerhafte Bedienung oder übermäßigen Verschleiß zu erkennen.

TABELLE 7. SERVICEPLAN FÜR DEN WECHSELSTROMGENERATOR

	WARTUNGSARBEIT	ator	ТҮР				SERVICESTUFE								
System	X = erforderlich * = falls notwendig	In Betrieb befindlicher Wechselstromgenerator	Inspektion	Test	Reinigung	Austauschen	Inbetriebnahme	Nach der Inbetriebnahme	250 Stunden / 0,5 Jahr	Stufe 1	1000 Stunden / 1 Jahr	Stufe 2	10.000 Stunden / 2 Jahre	Stufe 3	30.,000 Stunden / 5 Jahre
	Auslegung des Wechselstromgenerato s		x				x								
	Ausrichtung der Grundplatte		x				x								
	Ausrichtung der Kupplung		х				х					:	*		x
jo	Umgebungsbedingunge n und Sauberkeit		x				x	2	x	2	K	2	K	2	x
enerat	Umgebungstemperatur (innen und außen)			x			x	2	x	2	K	2	K	2	x
Vechselstromgenerator	Vollständige Maschine – Beschädigung, lose Teile & Erdungsverbindungen		x				x	2	x	2	ĸ	2	K	2	x
M	Schutzvorrichtungen, Abschrimungen, Warn- und Sicherheitsaufkleber		x				x	:	x	2	x	2	ĸ	:	x
	Wartungszugang		х				х								
	Elektrische Nennbetriebsbedingung en & Erregung	x		x			x		x	2	ĸ	2	ĸ)	x
	Schwingungen*	x		x			х		x	,	K		K		x

	WARTUNGSARBEIT	ıtor	TYP					SERVICESTUFE							
System	X = erforderlich * = falls notwendig	In Betrieb befindlicher Wechselstromgenerator	Inspektion	Test	Reinigung	Austauschen	Inbetriebnahme	Nach der Inbetriebnahme	250 Stunden / 0,5 Jahr	Stufe 1	1000 Stunden / 1 Jahr	Stufe 2	10.000 Stunden / 2 Jahre	Stufe 3	30.,000 Stunden / 5 Jahre
	Zustand der Wicklungen		x				x	2	K	2	K	,	K		ĸ
en	Isolierungswiderstand aller Wicklungen (PI- Test für MV/HV)			x			x		*		*	,	ĸ	2	ĸ
Wicklungen	Isolierungswiderstand des Läufers, Erreger und PMG			x				x x		K					
	Temperatursensoren	x		х			x	3	x x		x x		(2	K
	Kundenspezifische Einstellungen für Temperatursensoren		x				x								
	Zustand der Lager		х				х							2	K
	Schmierausgang und Abscheider				x			2	K	x x		K	2	K	
_	Einbringung von Schmierfett in schmierbare Lager	x				x		i	alle 4	000 I		500 S nate	tund	en / (6
Lager	Versiegelte(s) Lager		х						alle	4000	bis	4500	Stun	den	
	Schmierbare und versiegelte Lager					x						,	*		ĸ
	Temperatursensoren	x		х			x		K		K	3	K		K
	Kundenspezifische Einstellungen für Temperatursensoren		x				x								
Anschlusskasten	Alle Anschlüsse und Verdrahtungen für den Wechselstromgenerator /beim Kunden		x				x	,	x	;	ĸ	,	ĸ	;	ĸ

	WARTUNGSARBEIT	tor		T	ΥP		SERVICESTUFE								
System	X = erforderlich * = falls notwendig	In Betrieb befindlicher Wechselstromgenerator	Inspektion	Test	Reinigung	Austauschen	Inbetriebnahme	Nach der Inbetriebnahme	250 Stunden / 0,5 Jahr	Stufe 1	1000 Stunden / 1 Jahr	Stufe 2	10.000 Stunden / 2 Jahre	Stufe 3	30.,000 Stunden / 5 Jahre
nten	Anfängliche Einstellung AVR & PFC	x		x			x								
npone	Einstellungen AVR & PFC	x		x					x	2	x	2	x		x
Steuerelemente und Hilfskomponenten	Anschluss von Hilfskomponenten beim Kunden			x			x			2	x	2	x	2	x
nte un	Funktion von Hilfskomponenten			x			x	;	x	2	x	2	x	;	x
releme	Synchronisierung der Einstellungen		x				x								
teue	Synchronisierung	x		х			х		x		x	2	x		x
S	Stillstandsheizung					х						:	*	2	x
hter	Dioden und Varistoren		х				х	2	x	2	x	2	x		
Gleichric	Dioden und Varistoren					x								2	x
	Lufteinlasstemperatur	х		х			х	2	x	2	x	2	x	2	x
bu	Luftstrom (Geschwindigkeit & Richtung)	x	x				x								
Kühlung	Zustand des Gebläses		х				х		x		x		x		x
7	Zustand des Luftfilters (falls eingebaut)			х			х	2	x	2	x	,	x	2	x
	Luftfilter (falls eingebaut)				x	x					*		*	,	*
* Nu	ır für Standalone-Generat	or.													

7.2 Lager

7.2.1 Einleitung

HINWEIS

Befüllen Sie Lager nicht mit zu viel Schmiermittel. Das Lager kann dadurch beschädigt werden.

Mischen Sie nicht verschiedene Schmiermitteltypen. Wechseln Sie die Handschuhe, wenn Sie mit unterschiedlichen Schmiermitteln umgehen.

Bauen Sie die Lager in nicht statisch aufgeladenen und staubfreien Umgebungen zusammen und tragen Sie dabei flusenfreie Handschuhe.

Lagern Sie ausgebaute Teile und Werkzeuge in nicht statisch aufgeladenen und staubfreien Umgebungen, um eine Beschädigung oder Verunreinigung zu vermeiden.

Ein Lager wird durch die für seine Entfernung von der Läuferwelle anzuwendende Axialkraft beschädigt. Ein Lager kann nicht wiederverwendet werden.

Durch Anwendung von Kraft auf die Kugeln beim Einsetzen wird ein Lager beschädigt. Drücken Sie den äußeren Laufring nicht unter Anwendung von Gewalt auf den inneren Laufring und umgekehrt.

Versuchen Sie nicht, den Läufer zu drehen, indem Sie einen Hebel auf die Gebläseschaufeln anwenden. Das Gebläse wird dadurch beschädigt.

Der Läufer des Wechselstromgenerators wird auf der Nichtantriebsseite (NDE) von einem Lager und auf der Antriebsseite (DE) von einem Lager oder einer Kupplung zum Hauptantrieb abgestützt.

- Schmieren Sie alle schmierbaren Lager gemäß dem empfohlenen Wartungsplan mit der ordnungsgemäßen Menge an empfohlenen Schmiermitteln neu, oder wie auf dem Aufkleber am dem Schmiernippel angegeben.
- Überprüfen Sie alle versiegelte Lager in Übereinstimmung mit dem empfohlenen Wartungsplan.
 Wenden Sie sich an CGT, wenn Schmiermittel aus dem Lager ausgetreten ist, und geben Sie dabei den Lagertyp und die ausgetretene Schmiermittelmenge an.

7.2.2 Sicherheit

▲ GEFAHR

Mechanisch rotierende Teile

Mechanisch rotierende Bauteile können zu schweren Verletzungen oder Tod durch Quetschen, Abschneiden oder Fangen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über rotierenden Bauteilen entfernen.

ACHTUNG

Heiße Oberflächen

Der Kontakt mit heißen Oberflächen kann zu schweren Verbrennungen führen. Tragen Sie eine geeignete Persönliche Schutzausrüstung (PSA), um Verletzungen vorzubeugen.

⚠ VORSICHT

Schmierfett

Hautkontakt mit Schmierfett kann zu leichten bis mittelschweren Verletzungen durch Kontaktdermatitis führen.

Tragen Sie eine geeignete Persönliche Schutzausrüstung (PSA), um Verletzungen vorzubeugen.

HINWEIS

Füllen Sie nicht zu viel Schmiermittel in ein Lager. Das Lager kann dadurch beschädigt werden.

Mischen Sie nicht verschiedene Schmiermitteltypen. Wechseln Sie die Handschuhe, wenn Sie mit unterschiedlichen Schmiermitteln umgehen.

Bauen Sie die Lager in nicht statisch aufgeladenen und staubfreien Umgebungen zusammen und tragen Sie dabei flusenfreie Handschuhe.

Lagern Sie ausgebaute Teile und Werkzeuge in nicht statisch aufgeladenen und staubfreien Umgebungen, um eine Beschädigung oder Verunreinigung zu vermeiden.

Ein Lager wird durch die für seine Entfernung von der Läuferwelle anzuwendende Axialkraft beschädigt. Ein Lager kann nicht wiederverwendet werden.

Durch Anwendung von Kraft auf die Kugeln beim Einsetzen wird ein Lager beschädigt. Drücken Sie den äußeren Laufring nicht unter Anwendung von Gewalt auf den inneren Laufring und umgekehrt.

Versuchen Sie nicht, den Läufer zu drehen, indem Sie einen Hebel auf die Gebläseschaufeln anwenden. Das Gebläse wird dadurch beschädigt.

7.2.3 Lager nachschmieren

7.2.3.1 Anforderungen

TABELLE 8. NACHSCHMIEREN: ANFORDERUNGEN AN DIE AUSRÜSTUNG

Anforderung	Beschreibung
Persönliche Schutzausrüstung (PSA)	Tragen Sie die am Standort vorgeschriebene PSA
Verbrauchsstoffe	Flusenfreie ReinigungstücherDünne Einmalhandschuhe
Teile	CGT-Schmiermittelempfehlung
Werkzeuge	Schmierpistole (nach Volumen oder Masse kalibriert)

7.2.3.2 Nachschmiermethode

- 1. Identifizieren Sie für jedes Lager den Schmiernippel, den Nachschmieraufkleber und den Lagertyp.
- 2. Stellen Sie sicher, dass das neue Schmiermittel nicht verunreinigt ist. Es muss durchgängig eine weißlich-beige Farbe und steife Konsistenz aufweisen.
- 3. Reinigen Sie die Tülle der Schmierpistole und den Schmiernippel.
- 4. Reinigen Sie den Schmiermittelausgang.
- 5. Bringen Sie die Schmierpistole am Schmiernippel an und fügen Sie die ordnungsgemäße Menge Schmiermittel ein.

- Nehmen Sie den Wechselstromgenerator für mindestens 60 Minuten mit oder ohne Last in Betrieb.
- 7. Reinigen Sie den Schmiermittelausgang.
- 8. Überprüfen Sie die Farbe und die Konsistenz des am Ausgang ausgetretenen Schmiermittels und vergleichen Sie es mit dem neue Schmiermittel weißlich beige und mit steifer Konsistenz.
- Tauschen Sie das Lager aus, wenn das ausgetretene Schmiermittel stark verfärbt ist oder kein Fett austritt.

TABELLE 9. NACHSCHMIEREN: SCHMIERMITTELMENGE

Lamantana	Empfohlene Schmiermittelmenge							
Lagertyp	Volumen (cm³)	Masse (g)						
Antriebsseite (HC5)	46	41						
Nicht-antriebsseite (HC5)	33	29						
Antriebsseite (HC6)	75	66						
Nicht-antriebsseite (HC6)	60	53						

7.3 Bedienelemente

7.3.1 Einleitung

Ein in Betrieb befindlicher Wechselstromgenerator ist eine ungünstige Umgebung für Steuerkomponenten. Hitze und Schwingungen können bewirken, dass sich elektrische Verbindungen lösen und Kabel defekt werden. Eine routinemäßige Inspektion und Tests können ein Problem identifzieren, bevor es einen Ausfall verursacht, der ungeplante Stillstandzeiten mit sich bringt.

7.3.2 Sicherheit

GEFAHR

Spannungsführende elektrische Leiter

Spannungsführende elektrische Leiter können zu schweren Verletzungen durch Stromschlag und Verbrennungen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über elektrischen Leitern entfernen.

ACHTUNG

Heiße Oberflächen

Der Kontakt mit heißen Oberflächen kann zu schweren Verbrennungen führen. Tragen Sie eine geeignete Persönliche Schutzausrüstung (PSA), um Verletzungen vorzubeugen.

7.3.3 Verbindungstestanforderungen

TABELLE 10. VERBINDUNGSTESTANFORDERUNGEN

Anforderungen	Beschreibung
Persönliche Schutzausrüstung (PSA)	Tragen Sie die am Standort vorgeschriebene PSA
Verbrauchsstoffe	Keine
Teile	Keine
Werkzeuge	IsolationsprüferMultimeter
	Drehmomentschlüssel

7.3.4 Inspektion und Test

- 1. Entfernen Sie den Deckel des Anschlusskastens
- 2. Überprüfen Sie, ob die Befestigungen fest sitzen, die die Lastkabel sichern.
- 3. Überprüfen Sie, ob die Kabel fest an der Anschlusskastendurchführung befestigt sind, und lassen Sie ±25 mm Spiel durch einen Wechselstromgenerator auf Antivibrationshalterungen zu.
- Überprüfen Sie, ob alle Kabel im Anschlusskasten fest verankert und keinem Zug ausgesetzt sind.
- 5. Überprüfen Sie alle Kabel auf Anzeichen von Beschädigungen.
- 6. Überprüfen Sie, ob das AVR-Zubehör und die Stromtransformatoren richtig eingebaut sind und die Kabel mittig durch die Stromtransformatoren (wenn vorhanden) verlaufen.
- 7. Wenn ein Stillstandsheizung installiert ist:
 - a. Trennen Sie die Stromversorgung und messen Sie den elektrischen Widerstand der Heizelemente. Tauschen Sie das Heizelement aus, wenn ein offener Stromkreis gemessen wird.
 - b. Verbinden Sie beide Enden der Heizkabel miteinander.
 - c. Legen Sie die Prüfspannung aus der Tabelle Wicklung und Masse an.
 - d. Messen Sie den Isolationswiderstand nach 1 Minute (IR 1 min).
 - e. Nehmen Sie die Prüfspannung ab.
 - f. Wenn der gemessene Isolationswiderstand kleiner als akzeptabel ist, tauschen Sie das Heizelement aus. Siehe Tabelle 11 auf Seite 41 zur Information über die Werte.
- 8. Prüfen Sie die Versorgungsspannung der Stillstandsheizung am Anschlusskasten der Heizung. Bei gestopptem Wechselstromgenerator sollen (je nach Patrone und Angabe auf dem Schild) 120 VAC oder 240 VAC anliegen.
- Prüfen Sie, dass AVR und AVR-Zubehör im Anschlusskasten sauber und richtig an den schwingungsdämpfenden Lagern montiert sind und die Kabelstecker fest mit den Anschlüssen verbunden sind.
- 10. Überprüfen Sie bei Parallelbetrieb, ob die Kabel für die Synchronsteuerung richtig angeschlossen sind.
- 11. Montieren und befestigen Sie den Deckel des Anschlusskastens.

TABELLE 11. PRÜFSPANNUNG UND KLEINSTER AKZEPTABLER ISOLATIONSWIDERSTAND FÜR NEUE UND FÜR IN BETRIEB BEFINDLICHE STILLSTANDSHEIZUNGEN

Komponente	Prüfspannung (V)		nswiderstand bei te (ΜΩ)
		Neu	In Betrieb
Stillstandsheizung	500	10	1

7.4 Kühlsystem

7.4.1 Einleitung

Die Wechselstromgeneratoren wurden den Standards der EU-Sicherheitsrichtlinien entsprechend entwickelt und sind auf die Wirkung der Betriebstemperatur auf die Wicklungsisolierung ausgelegt.

BS EN 60085 (≡ IEC 60085) Elektrische Isolierung – Thermische Bewertung und Bezeichnung klassifiziert die Isolierung nach der maximalen Betriebstemperatur für eine angemessene Lebensdauer. Obwohl auch chemische Verunreinigungen und elektrische und mechanische Belastungen beitragen, ist die Temperatur der Hauptalterungsfaktor. Eine Gebläsekühlung sorgt für eine stabile Betriebstemperatur unter dem Grenzwert der Isolierungsklasse.

Falls sich die Betriebsumgebung von den auf dem Typenschild angegebenen Werten unterscheidet, muss die Nennausgangsleistung wie folgt reduziert werden:

- 3 % für eine Nutzung Klasse H pro 5 °C, die die Temperatur der in das Kühlgebläse eintretenden Umgebungsluft 40 °C überschreitet, bis zu einem Maximum von 60 °C
- 3,5 % für eine Nutzung Klasse F pro 5 °C, die die Temperatur der in das Kühlgebläse eintretenden Umgebungsluft 40 °C überschreitet, bis zu einem Maximum von 60 °C
- 4,5 % für eine Nutzung Klasse B pro 5 °C, die die Temperatur der in das Kühlgebläse eintretenden Umgebungsluft 40 °C überschreitet, bis zu einem Maximum von 60 °C
- 3 % je 500 m Höhenanstieg über 1000 m bis zu 4000 m aufgrund der verringerten thermischen Kapazität von Luft mit geringerer Dichte, und
- 5 %, wenn Luftfilter montiert sind, aufgrund des reduzierten Luftstroms.

Hinweis: Die obigen Werte gelten kumulativ in Abhängigkeit von den Umweltbedingungen.

Für eine effiziente Kühlung müssen Kühlgebläse, Luftfilter und Dichtungen in gutem Zustand gehalten werden.

7.4.2 Sicherheit

▲ GEFAHR

Mechanisch rotierende Teile

Mechanisch rotierende Bauteile können zu schweren Verletzungen oder Tod durch Quetschen, Abschneiden oder Fangen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über rotierenden Bauteilen entfernen.

ACHTUNG

Heiße Oberflächen

Der Kontakt mit heißen Oberflächen kann zu schweren Verbrennungen führen. Tragen Sie eine geeignete Persönliche Schutzausrüstung (PSA), um Verletzungen vorzubeugen.

⚠ VORSICHT

Staub

Das Einatmen von Staub kann zu leichten bis mittelschweren Verletzungen durch Reizung der Lungen führen. Staub kann zu leichten bis mittelschweren Verletzungen durch Reizung der Augen führen.

Tragen Sie eine geeignete Persönliche Schutzausrüstung (PSA), um Verletzungen vorzubeugen. Lüften Sie den Bereich, um Staub abzuführen.

HINWEIS

Den Wechselstromgeneratorläufer nicht mit dem Lüfterrad verdrehen. Der Lüfter hält solchen Kräften nicht stand und wird dadurch beschädigt.

HINWEIS

Filter sind darauf ausgelegt, Staub zu entfernen, keine Feuchtigkeit. Feuchte Filterelemente können einen reduzierten Luftstrom und ein Überheizen verursachen. Sorgen Sie dafür, dass Filterelemente nicht feucht werden.

7.4.3 Anforderungen für Kühlsystemtest

TABELLE 12. ANFORDERUNGEN FÜR KÜHLSYSTEMTEST

Anforderungen	Beschreibung
Persönliche Schutzausrüstung (PSA)	Tragen Sie die am Standort vorgeschriebene PSA
	Tragen Sie Schutzbrille und Gehörschutz
	Tragen Sie Atemschutzausrüstung
Verbrauchsstoffe	Flusenfreie Reinigungstücher
	Dünne Einmalhandschuhe
Teile	Luftfilter (falls eingebaut)
	Luftfilterdichtungen (falls eingebaut)
Werkzeug	Keine

7.4.4 Inspektion und Reinigung

HINWEIS

Ein Sensor erkennt den durch blockierte Filter verursachten Differenzialdruck. Wenn der Sensor auslöst, überprüfen und reinigen Sie die Luftfilter häufiger.

- 1. Entfernen Sie das Gebläsegitter.
- 2. Überprüfen Sie das Gebläse auf beschädigte Schaufeln und Sprünge.

- 3. Entfernen Sie die Luftfilter (am Gebläse und am Anschlusskasten, falls vorhanden) aus ihren Rahmen
- 4. Waschen und trocknen Sie die Luftfilter und Dichtungen, um Schmutzpartikel zu entfernen.
- 5. Überprüfen Sie die Filter und die Dichtungen auf Beschädigungen und tauschen Sie sie gegebenenfalls aus.
- 6. Bringen Sie die Filter und die Dichtungen an.
- 7. Bringen Sie das Gebläsegitter wieder an.
- 8. Bereiten Sie den Generatorsatz auf die Wiederinbetriebsetzung vor.
- 9. Achten Sie darauf, dass Lufteinlässe und -auslässe nicht blockiert sind.

7.5 Kupplung

7.5.1 Einleitung

Einwandfreie Funktion und lange Lebensdauer der Bauteile sind von der mechanischen Beanspruchung des Wechselstromgenerators abhängig, die möglichst gering sein sollte. Bei der Verkupplung zu einem Generatorsatz können Fluchtungsfehler und Schwingungen des Hauptantriebsmotors zu mechanischer Beanspruchung führen.

Die Rotationsachsen des Generatorrotors und der Motorausgangswelle müssen gleichachsig (radiale und winklige Ausrichtung) sein.

Torsionsschwingungen können wellenbetriebene Systeme mit internem Verbrennungsmotor beschädigen, wenn sie nicht kontrolliert werden. Der Hersteller des Generatorsatzes muss die Wirkung von Torsionsschwingungen auf den Wechselstromgenerator abschätzen: Läufermaße und trägheit sowie Kupplungsdaten sind auf Anforderung erhältlich.

7.5.2 Sicherheit

HINWEIS

Den Wechselstromgeneratorläufer nicht mit dem Lüfterrad verdrehen. Der Lüfter hält solchen Kräften nicht stand und wird dadurch beschädigt.

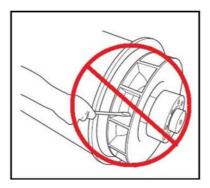


ABBILDUNG 18. DEN GENERATORROTOR NICHT MIT EINEM HEBEL DREHEN

7.5.3 Anforderungen für Kupplungsprüfung

TABELLE 13. ANFORDERUNGEN FÜR KUPPLUNGSPRÜFUNG

Anforderungen	Beschreibung
Persönliche Schutzausrüstung (PSA)	Tragen Sie die am Standort vorgeschriebene PSA
Verbrauchsstoffe	Keine
Teile	Keine
Werkzeuge	Messuhr Drehmomentschlüssel

7.5.4 Überprüfen der Montagepunkte

- 1. Überprüfen Sie, ob sich die Bodenplatte und die Anlageflächen des Generatorsatzes in einem guten Zustand befinden und keine Risse aufweisen
- 2. Überprüfen Sie, ob der Gummi in den Antivibrationsmontagen porös ist
- Überprüfen Sie die Verlaufsaufzeichnungen für die Vibrationsmontage auf eine zunehmende Schwingungstendenz

7.5.4.1 Einlager-Kupplung

- 1. Entfernen Sie das Adaptergitter und die Abdeckung auf der Antriebsseite, um Zugriff auf die Kupplung zu erhalten
- Überprüfen Sie, ob die Kupplungsscheiben beschädigt sind, Risse oder Verformungen aufweisen, und ob die Löcher der Kupplungsscheibe ausgeschlagen sind. Falls Beschädigungen vorliegen, tauschen Sie den kompletten Scheibensatz aus.
- 3. Überprüfen Sie die Festigkeit der Schrauben, mit denen die Kupplungsscheiben am Motorschwungrad befestigt sind. Ziehen Sie sie in der Reihenfolge an, wie für die Wechselstromgeneratorkopplung im Kapitel Installation beschrieben, und mit einem Drehmoment, wie vom Motorhersteller empfohlen.
- 4. Bringen Sie das Adaptergitter und die tropfsichere Abdeckung auf der Antriebsseite wieder an.

7.6 Gleichrichtersystem

7.6.1 Einleitung

Der Gleichrichter wandelt Wechselstrom (AC), der in den Erregerläuferwicklungen induziert wird, in Gleichstrom (DC) um, um die Hauptläuferpole zu magnetisieren. Der Gleichrichter besteht aus zwei halbkreisförmigen Plus- und Minusplatten mit je drei Dioden. Der DC-Ausgang des Gleichrichters ist neben dem Hauptläufer auch mit einem Varistor verbunden. Der Varistor schützt den Gleichrichter vor Spannungsspitzen und Überspannungen, die unter bestimmten Ladebedingungen des Wechselstromgenerators am Läufer auftreten können.

Dioden bieten nur in einer Richtung einen geringen Stromwiderstand: Positiver Strom fließt von der Anode zur Kathode, oder anders ausgedrückt, negativer Strom fließt von der Kathode zur Anode.

Die Erregerläuferwicklungen sind an 3 Diodenanoden angeschlossen, die die Plusplatte bilden, und an 3 Diodenkathoden, die die Minusplatte zu bilden, um für eine vollständige Wellengleichrichtung von AC zu DC zu sorgen. Der Gleichrichter ist auf dem Erregerläufer auf der Nicht-Antriebsseite moniert und dreht sich mit diesem.

7.6.2 Sicherheit

▲ GEFAHR

Spannungsführende elektrische Leiter

Spannungsführende elektrische Leiter können zu schweren Verletzungen durch Stromschlag und Verbrennungen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über elektrischen Leitern entfernen.

▲ GEFAHR

Mechanisch rotierende Teile

Mechanisch rotierende Bauteile können zu schweren Verletzungen oder Tod durch Quetschen, Abschneiden oder Fangen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über rotierenden Bauteilen entfernen.

7.6.3 Gleichrichtersystemkomponente: Anforderungen an Prüfung und Austausch

TABELLE 14. GLEICHRICHTERSYSTEM: ANFORDERUNGEN FÜR PRÜFUNG UND AUSTAUSCH DER KOMPONENTE

Anforderungen	Beschreibung
Persönliche Schutzausrüstung (PSA)	Geeignete PSA tragen
Verbrauchsstoffe	 Loctite 241 Gewindesicherung Dow Corning Silikon-Wärmeableitpaste Typ 340 oder äquivalent
Teile	Kompletter Satz mit drei Anodenkontakt- Dioden und drei Kathodenkontakt-Dioden (alle vom selben Hersteller) Ein Metalloxid-Varistor
Werkzeuge	IsolationsprüferMultimeterDrehmomentschlüssel

7.6.4 Varistor testen und austauschen

- 1. Überprüfen Sie den Varistor (falls eingebaut).
- 2. Kennzeichnen Sie den Varistor als defekt, wenn es Anzeichen für Überhitzung (Farbverblassung, Blasen, geschmolzene Stellen) oder Auflösung gibt.
- 3. Trennen Sie einen Varistorkontakt. Bewahren Sie die Befestigungen und Unterlegscheiben auf.
- 4. Messen Sie den Widerstand über den Varistor. Fehlerfreie Varistoren haben einen Widerstand höher 100 M Ω .

- Kennzeichnen Sie den Varistor als defekt, wenn der Widerstand in eine Richtung kurzgeschlossen oder unterbrochen ist. (Manche Multimeter zeigen bei hohen Widerstandswerten O.L. an. Beachten Sie die Grenzwerte Ihrer Instrumente).
- 6. Falls der Varistor defekt ist, tauschen Sie den Varistor sowie alle Dioden aus.
- 7. Schließen Sie ihn wieder an und stellen Sie sicher, dass alle Kontakte fest sitzen, die Unterlegscheiben angebracht und die Befestigungen angezogen sind.

7.6.5 Dioden testen und austauschen

HINWEIS

Ziehen Sie eine Diode nicht mit einem höheren Drehmoment als vorgegeben an. Die Diode wird sonst beschädigt.

- 1. Trennen Sie den Kontakt einer Diode, wo sie an der isolierten Anschlussklemme in die Wicklungen eintritt. Bewahren Sie die Befestigungen und Unterlegscheiben auf.
- Messen Sie den Spannungsabfall über die Diode in Vorwärtsrichtung. Verwenden Sie dazu die Diodentestfunktion eines Multimeters.
- 3. Messen Sie den Widerstand über die Diode in umgekehrter Richtung. Verwenden Sie dazu die 1000-VDC-Testspannung eines Isolationsprüfers.
- 4. Die Diode ist defekt, wenn der Spannungsabfall in Vorwärtsrichtung nicht in einem Bereich von 0.3 bis 0.9 V liegt oder der Widerstand in umgekehrter Richtung kleiner als $20 \text{ M}\Omega$ ist.
- 5. Wiederholen Sie die Tests für die restlichen fünf Dioden.
- 6. Falls eine Diode defekt ist, tauschen Sie den kompletten Satz mit sechs Dioden aus (selber Typ, selber Hersteller):
 - a. Entfernen Sie die Diode(n).
 - b. Tragen Sie eine kleine Menge Wärmeableitpaste **nur** auf die Basis der Austauschdioden auf, nicht auf die Gewinde.
 - c. Überprüfen Sie die Polarität der Diode(n).
 - d. Schrauben Sie alle Austauschdioden in eine Gewindebohrung auf der Gleichrichterplatte.
 - e. Wenden Sie ein Drehmoment von 2,6 bis 3,1 Nm (23,4 bis 27,9 in-lb) an, um einen ausreichenden mechanischen, elektrischen und thermischen Kontakt herzustellen.
 - f. Tauschen Sie den Varistor aus.
- 7. Stellen Sie den Anschluss wieder her und überprüfen Sie, ob alle Kontakte fest sitzen, die Unterlegscheiben angebracht und die Befestigungen angezogen sind.

7.7 Temperatursensoren

7.7.1 Einleitung

Die Wechselstromgeneratoren wurden den Standards der EU-Sicherheitsrichtlinien entsprechend entwickelt und sind auf die Wirkung der Betriebstemperatur auf die Wicklungsisolierung ausgelegt. Temperatursensoren (falls angebracht) erkennen eine unübliche Überheizung der Hauptständerwicklungen und Lager. Es gibt zwei Sensortypen: RTD-Sensoren (Resistance Temperature Detector) mit drei Drähten, und PTC-Thermistoren (Positive Temperature Coefficient) mit zwei Drähten, die an einen Klemmenblock im Hilfs- oder Hauptanschlusskasten angeschlossen werden. Der Widerstand von Platin-RTD-Sensoren (PT100) RTD nimmt linear mit der Temperatur zu.

Temperatur +1 °C +2 °C +3 °C +4 °C +5 °C +6 °C +7 °C +8 °C +9 °C (°C) 40,00 115,54 116,31 116,70 117,08 117,47 117,86 115,93 118,24 118,63 119,01 50,00 119,40 119,78 120,17 120,55 120,94 121,32 121,71 122,09 122,47 122,86 60,00 123,24 123,63 124,01 124,39 124,78 125,16 125,54 125,93 126,31 126,69 70,00 127,08 127,46 127,84 128,22 128,61 128,99 129,37 129,75 130,13 130,52 80,00 130,90 131,28 131,66 132,04 132,42 132,80 133,57 133,95 134,33 133,18 135,09 135,47 135,85 136,23 136,61 137,37 138,13 90,00 134,71 136,99 137,75 100,00 138,51 138,88 139,26 139,64 140,02 140,40 140,78 141,16 141,54 141,91 110,00 142.29 142.67 143.05 143.43 143.80 144,18 144,56 144.94 145,31 145.69 120,00 146,07 146,44 146,82 147,20 147,57 147,95 148,33 148,70 149,08 149,46 130,00 149,83 150,21 150,58 150,96 151,33 151.71 152,08 152,46 152,83 153,21 140,00 153,58 153,96 154,33 154,71 155,08 155,46 155,83 156,20 156,58 156,95 150,00 157,33 157,70 158,07 158,45 158,82 159,19 159,56 159,94 160,31 160,68 160,00 161,05 161,43 161,80 162,17 162,54 162,91 163,29 163,66 164,03 164,40 165,14 165,51 165,89 167,00 167,74 170,00 164,77 166,26 166,63 167,37 168,11 180,00 168,48

TABELLE 15. WIDERSTAND (Ω) DES PT100-SENSORS ZWISCHEN 40 UND 180 °C

PTC-Thermistoren zeichnen sich durch einen plötzlichen Widerstandsanstieg bei einer Referenztemperatur ("Schalttemperatur") aus. Der Anschluss einer vom Kunden bereitgestellten externen Ausrüstung ist möglich, um die Sensoren zu überwachen und Signale zu generieren, die einen Alarm auslösen und den Generatorsatz abschalten.

BS EN 60085 (≡ IEC 60085) Elektrische Isolierung – Thermische Bewertung und Bezeichnung klassifiziert die Isolierung von Wicklungen nach der maximalen Betriebstemperatur für eine angemessene Lebensdauer. Um eine Beschädigung der Wicklungen zu vermeiden, sollten die Signale der auf dem Typenschild des Wechselstromgenerators angegebenen Isolationsklasse entsprechend eingestellt werden.

TABELLE 16. EINSTELLUNG DER ALARM- UND ABSCHALTTEMPERATUREN FÜR WICKLUNGEN

Wicklungsisolierung	Max. Dauertemperatur (°C)	Alarmtemperatur (°C)	Abschalttemperatur (°C)
Klasse B	130	120	140
Klasse F	155	145	165
Klasse H	180	170	190

Um eine Überhitzung der Lager zu vermeiden, sollten die Steuersignale der folgenden Tabelle entsprechend eingestellt werden.

TABELLE 17. EINSTELLUNG DER ALARM- UND ABSCHALTTEMPERATUREN FÜR LAGER

Lager	Alarmtemperatur (°C)	Abschalttemperatur (°C)
Lager, Antriebsseite	45 + maximale Umgebungstemperatur	50 + maximale Umgebungstemperatur
Lager, Nicht-Antriebsseite	40 + maximale Umgebungstemperatur	45 + maximale Umgebungstemperatur

7.7.2 Sicherheit

GEFAHR

Spannungsführende elektrische Leiter

Spannungsführende elektrische Leiter können zu schweren Verletzungen durch Stromschlag und Verbrennungen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über elektrischen Leitern entfernen.

ACHTUNG

Heiße Oberflächen

Der Kontakt mit heißen Oberflächen kann zu schweren Verbrennungen führen. Tragen Sie eine geeignete Persönliche Schutzausrüstung (PSA), um Verletzungen vorzubeugen.

7.7.3 Testen der RTD-Temperatursensoren

- 1. Entfernen Sie die Abdeckung des Hilfsanschlusskastens.
- 2. Identifizieren Sie die Sensorkontakte am Klemmenblock und die Einbaustellen der Sensoren
- 3. Messen Sie den Widerstand zwischen dem weißen und jedem roten Draht eines Sensors
- 4. Berechnen Sie aus dem gemessenen Widerstand die Sensortemperatur
- 5. Vergleichen Sie die berechnete Temperatur mit der von der externen Überwachungsausrüstung angezeigten Temperatur (falls vorhanden)
- 6. Vergleichen Sie die Alarm- und Abschalteinstellungen (falls vorhanden) mit den empfohlenen Einstellungen
- 7. Wiederholen Sie die Schritte 3 bis 7 für jeden Sensor
- 8. Bringen Sie die Abdeckung des Hilfsanschlusskastens wieder an.
- Wenden Sie sich an die Kundendienst-Hotline von Cummins, falls defekte Sensoren ausgetauscht werden müssen. Hauptständer-RTDs sind nicht ersetzbar. Lager-RTDs sind ersetzbar.

7.7.4 Testen der PTC-Temperatursensoren

- 1. Entfernen Sie die Abdeckung des Hilfsanschlusskastens.
- 2. Identifizieren Sie die Kontakte am Klemmenblock und die Einbauposition jedes Sensors.
- 3. Messen Sie den Widerstand zwischen den beiden Drähten.
- 4. Der Sensor ist defekt, wenn der Widerstand einen offenen Schaltkreis (Ω unendlich) oder einen Kurzschluss (Ω Null) anzeigt.
- 5. Wiederholen Sie die Schritte 3 bis 5 für jeden Sensor.

- 6. Schalten Sie den Wechselstromgenerator ab und überprüfen Sie die Änderung des Widerstands bei abgekühlter Ständerwicklung.
- 7. Der Sensor ist defekt, wenn sich der Widerstand nicht oder nicht gleichmäßig ändert.
- 8. Wiederholen Sie die Schritte 6 und 7 für jeden Sensor.
- 9. Bringen Sie die Abdeckung des Hilfsanschlusskastens wieder an.
- 10. Wenden Sie sich an die Kundendienst-Hotline von Cummins, falls defekte Sensoren ausgetauscht werden müssen.

7.8 Wicklungen

7.8.1 Hochspannung prüfen

HINWEIS

Die Wicklungen wurden bereits im Verlauf der Herstellung mit Hochspannung geprüft. Wiederholte Hochspannungsprüfungen können die Isolation verschlechtern und die Lebensdauer verringern. Sollte für die Abnahme durch den Kunden dennoch eine weitere Hochspannungsprüfung durchgeführt werden, ist diese bei reduzierter Spannung V = (0,8 x Nennspannung + 1000) durchzuführen. Bei Generatoren, die bereits in Betrieb, sind weitere Prüfungen zu Wartungszwecken nach Sichtkontrolle und Überprüfung des Isolationswiderstands mit reduzierter Spannung V = (1,5 x Nennspannung) durchzuführen.

7.8.2 Einleitung

HINWEIS

Trennen Sie vor der Prüfung alle Steuerleitungen und kundenspezifischen Lastkabel von den Wicklungsanschlüssen des Wechselstromgenerators ab.

HINWEIS

Der AVR (Automatic Voltage Regulator) enthält elektronische Komponenten, die bei der Anlegung von Hochspannung bei Isolationswiderstandstests beschädigt würden. Der AVR muss abgetrennt werden, bevor Isolationswiderstandstests durchgeführt werden. Die Temperatursensoren müssen geerdet werden, bevor Isolationswiderstandstests durchgeführt werden.

Feuchte oder verschmutzte Wicklungen haben einen geringeren elektrischen Widerstand und könnten bei Isolationswiderstandstests mit Hochspannung beschädigt werden. Testen Sie im Zweifelsfall den Widerstand zuerst mit Niederspannung (500 V).

Die Leistung des Generators ist von einer guten elektrischen Isolierung der Wicklungen abhängig. Elektrische, mechanische und thermische Belastungen sowie chemische und umgebungsbedingte Verunreinigungen verschlechtern die Isolierung. Verschiedene Diagnosetests zeigen den Zustand der Isolierung auf. Dazu werden eine Testspannung an isolierte Wicklungen angelegt, der Stromfluss gemessen und der elektrische Widerstand nach dem Ohmschen Gesetz berechnet.

Wenn zuerst eine DC-Testspannung angelegt wird, können drei Ströme fließen:

- Kapazitiver Strom: zur Ladung der Wicklung auf Testspannung (fällt innerhalb von Sekunden auf Null)
- **Polarisationsstrom**: zur Ausrichtung der Isolierungsmoleküle gemäß dem angelegten elektrischen Feld (fällt innerhalb von Minuten auf annähernd Null ab), und
- Kriechstrom: Entladung auf Masse, wo der Isolationswiderstand durch Feuchtigkeit und Verunreinigung verschlechtert ist (steigt innerhalb von Sekunden auf einen konstanten Wert)

Für einen Isolationswiderstandstest erfolgt eine einzige Messung eine Minute nach Anlegen einer DC-Testspannung, nachdem der kapazitive Strom abgeklungen ist. Für einen Polarisationsindextest erfolgt eine zweite Messung nach zehn Minuten. Ein akzeptables Ergebnis liegt vor, wenn die zweite Isolationswiderstandsmessung einen mindestens doppelt so hohen Wert wie die erste erbringt, weil der Polarisationsstrom abgefallen ist. Bei einer schlechten Isolierung, wo der Kriechstrom dominiert, sind die beiden Werte ähnlich. Ein spezielles Isolationstestgerät nimmt präzise, zuverlässige Messungen und kann einige Tests automatisieren.

7.8.3 Sicherheit

▲ GEFAHR

Spannungsführende elektrische Leiter

Spannungsführende elektrische Leiter können zu schweren Verletzungen durch Stromschlag und Verbrennungen führen.

Trennen Sie den Generatorsatz zum Schutz vor Verletzungen von allen Energiequellen, lassen Sie gespeicherte Energie ab und sichern Sie den Generatorsatz mittels entsprechender Verriegelungen/Kennzeichnungen, bevor Sie Schutzabdeckungen über elektrischen Leitern entfernen.

ACHTUNG

Spannungsführende elektrische Leiter

Spannungsführende Leiter an den Wicklungsanschlüssen nach einer Prüfung des Isolationswiderstands können zu schweren Verletzungen oder Tod durch Stromschlag oder Verbrennungen führen.

Um Verletzungen vorzubeugen, Wicklungen mindestens 5 Minuten lang durch Erdschluss über einen Erdungsstab entladen.

7.8.4 Anforderungen

TABELLE 18. ANFORDERUNGEN FÜR WICKLUNGSPRÜFUNGEN

Anforderung	Beschreibung
Persönliche Schutzausrüstung (PSA)	Tragen Sie die am Standort vorgeschriebene PSA.
Verbrauchsstoffe	Keine
Teile	Keine
Werkzeuge	 Isolationsprüfer Multimeter Milliohm-Messgerät oder Mikro-Ohmmeter Klemmen-Amperemeter Infrarotthermometer Erdungsstab

7.8.5 Testen des elektrischen Widerstands der Wicklungen

- 1. Halten Sie den Wechselstromgenerator an.
- 2. Überprüfen Sie den elektrischen Widerstand der Erregerfeldwicklung (Ständer):
 - a. Trennen Sie die Erregerfeldkontakte F1 und F2 vom AVR.

- b. Messen Sie den elektrischen Widerstand zwischen F1 und F2 mit einem Multimeter und schreiben Sie den Wert auf.
- c. Schließen Sie die Erregerfeldkontakte F1 und F2 wieder an den AVR an.
- d. Stellen Sie sicher, dass die Befestigungselemente fest sitzen.
- 3. Überprüfen Sie den elektrischen Widerstand der Erregerankerwicklung (Läufer):
 - a. Kennzeichnen Sie die an den Dioden an einer der beiden Gleichrichterplatten angebrachten Leitungen.
 - b. Trennen Sie alle Erregerläuferkontakte von allen Dioden am Gleichrichter.
 - c. Messen Sie den elektrischen Widerstand paarweise zwischen den gekennzeichneten Kontakten (zwischen Phasenwicklungen) und schreiben Sie den Wert auf. Dazu muss ein spezielles Mikro-Ohmmeter verwendet werden.
 - d. Schließen Sie alle Erregerläuferkontakte wieder an die Dioden an.
 - e. Stellen Sie sicher, dass die Befestigungselemente fest sitzen.
- 4. Überprüfen Sie den elektrischen Widerstand der Hauptfeldwicklung (Läufer):
 - a. Trennen Sie die beiden Gleichstromleitungen des Hauptläufers von den Gleichrichterplatten.
 - b. Messen Sie den elektrischen Widerstand zwischen den Hauptläuferleitungen und schreiben Sie den Wert auf. Dazu muss ein spezielles Mikro-Ohmmeter verwendet werden.
 - c. Schließen Sie die beiden Gleichstromleitungen des Hauptläufers wieder an den Gleichrichterplatten an.
 - d. Stellen Sie sicher, dass die Befestigungselemente fest sitzen.
- 5. Überprüfen Sie den elektrischen Widerstand der Hauptankerwicklung (Ständer):
 - a. Trennen Sie die Leitungen des Hauptständers von den Ausgangsklemmen.
 - b. Messen Sie den elektrischen Widerstand zwischen den Leitungen U1 und U2 und zwischen U5 und U6 (soweit vorhanden). Dazu muss ein spezielles Mikro-Ohmmeter verwendet werden.
 - c. Messen Sie den elektrischen Widerstand zwischen den Leitungen V1 und V2 und zwischen V5 und V6 (soweit vorhanden). Dazu muss ein spezielles Mikro-Ohmmeter verwendet werden.
 - d. Messen Sie den elektrischen Widerstand zwischen den Leitungen W1 und W 2 und zwischen W5 und W6 (soweit vorhanden). Dazu muss ein spezielles Mikro-Ohmmeter verwendet werden.
 - e. Schließen Sie alle Leitungen des Hauptständers wieder an den Ausgangsklemmen an.
 - f. Stellen Sie sicher, dass die Befestigungselemente fest sitzen.
- 6. Überprüfen Sie den elektrischen Widerstand der PMG-Ankerwicklung (Ständer), falls vorhanden:
 - a. Trennen Sie die drei PMG-Ausgangskontakte P2, P3 und P4 vom AVR.
 - b. Messen Sie den elektrischen Widerstand paarweise zwischen den PMG-Ausgangskontakten mit einem Multimeter und schreiben Sie den Wert auf.
 - c. Schließen Sie die drei PMG-Ausgangskontakte P2, P3 und P4 wieder an den AVR an.
 - d. Stellen Sie sicher, dass die Befestigungselemente fest sitzen.
- 7. Überprüfen Sie anhand der technischen Daten (Kapitel 9 auf Seite 63), um die gemessenen Widerstände aller Wicklungen mit den Referenzwerten zu vergleichen.

7.8.6 Prüfen des Isolierungswiderstands der Wicklungen

HINWEIS

Der Generator darf erst wieder in Betrieb genommen werden, wenn der Mindestisolierungswiderstand erreicht wurde.

TABELLE 19. TESTSPANNUNG UND MINIMALER AKZEPTABLER ISOLIERUNGSWIDERSTAND FÜR NEUE UND IN BETRIEB BEFINDLICHE GENERATOREN

T- ''	Test	Mindes-Isolierungswiderstand nach 1 Minute (MΩ)		
Teil	Spannung (V)	Neu	In Betrieb befindlich	
Hauptständer	500	10	5	
PMG-Ständer	500	5	3	
Erregerständer	500	10	5	
Erregerläufer, Gleichrichter und Hauptläufer in Kombination	500	10	5	

- 1. Überprüfen Sie die Wicklungen auf mechanische Beschädigungen oder Farbverblassung durch Überhitzung. Reinigen Sie die Isolierung, falls sich dort hygroskopischer Staub und Schmutz abgelagert haben.
- 2. Für die Hauptständer:
 - a. Trennen Sie den Null/Erde-Leiter (falls vorhanden).
 - b. Schließen Sie die drei Leitungen aller Phasenwicklungen zusammen (falls möglich).
 - Legen Sie die Testspannung aus der Tabelle zwischen allen Phasenleitungen und Masse an.
 - d. Messen Sie den Isolationswiderstand nach 1 Minute (IR_{1min}).
 - e. Leiten Sie die Testspannung fünf Minuten lang über einen Erdungsstab ab.
 - f. Falls der gemessene Isolationswiderstand kleiner als der minimale akzeptable Wert ist, trocknen Sie die Isolierung und wiederholen die Methode.
 - g. Schließen Sie den Null/Erde-Leiter (falls vorhanden) wieder an.
- 3. Für PMG- und Erregerständer und eine Kombination aus Erreger- und Hauptläufer:
 - a. Verbinden Sie beide Enden der Wicklung (falls möglich).
 - b. Legen Sie die Testspannung aus der Tabelle zwischen der Wicklung und Masse an.
 - c. Messen Sie den Isolationswiderstand nach 1 Minute (IR_{1min}).
 - d. Leiten Sie die Testspannung fünf Minuten lang über einen Erdungsstab ab.
 - e. Falls der gemessene Isolationswiderstand kleiner als der minimale akzeptable Wert ist, trocknen Sie die Isolierung und wiederholen die Methode.
 - f. Wiederholen Sie die Methode für jede Wicklung.
 - g. Entfernen Sie die für den Test vorgenommenen Verbindungen.

7.8.7 Trocknen der Isolierung

Wenden Sie die folgenden Methoden an, um die Isolierung der Hauptständerwicklungen zu trocknen. Um Beschädigungen zu vermeiden, wenn Wasserdampf aus der Isolierung ausgestoßen wird, achten Sie darauf, dass die Wicklungstemperatur nicht um mehr als 5 °C pro Stunde ansteigt und 90 °C nicht übersteigt.

Zeichnen Sie den Graphen für den Isolaitonswiderstand, um zu zeigen, wann der Trocknungsvorgang abgeschlossen ist.

7.8.7.1 Trocknen mit Umgebungsluft

In vielen Fällen kann der Wechselstromgenerator bereits ausreichend über sein eigenes Kühlsystem getrocknet werden. Trennen Sie die Kabel von den Klemmen X+ (F1) und XX- (F2) des AVR, sodass der Erregerständer nicht mit Erregerspannung versorgt wird. Betreiben Sie den Generatorsatz in diesem unerregten Zustand. Die Luft muss frei durch den Wechselstromgenerator strömen, um die Feuchtigkeit zu entfernen. Schalten Sie die Stillstandsheizer ein (falls vorhanden), um die Trocknungswirkung des Luftstroms zu unterstützen.

Nach Abschluss des Trocknungsvorgangs schließen Sie die Kabel zwischen dem Erregerständer und dem AVR wieder an. Falls der Generatorsatz nicht sofort wieder in Betrieb genommen wird, schalten Sie vor der Inbetriebnahme den Stillstandsheizer ein (falls vorhanden) und testen den Isolationswiderstand erneut.

7.8.7.2 Trocknen mit Heißluft

Leiten Sie dazu mit Hilfe von einem oder zwei elektrischen Heizlüftern mit einer Leistung zwischen 1 und 3 kW Heißluft in die Lufteinlassöffnung des Wechselstromgenerators. Sorgen Sie für einen Mindestabstand von 300 mm zwischen Wärmequelle und Generatorwicklungen, um Sengschäden oder eine Überhitzung und Beschädigung der Isolierung zu vermeiden. Die Luft muss frei durch den Wechselstromgenerator strömen, um die Feuchtigkeit zu entfernen.

Entfernen Sie die Heizlüfter und nehmen Sie den Generatorbetrieb wieder auf.

Falls der Generatorsatz nicht sofort wieder in Betrieb genommen wird, schalten Sie vor der Inbetriebnahme die Stillstandsheizer ein (falls vorhanden) und testen den Isolationswiderstand erneut.

7.8.7.3 Ausgabe eines IR-Graphen

Unabhängig davon, welche Methode für die Trocknung des Wechselstromgenerators verwendet wird, messen Sie den Isolationswiderstand und die Temperatur (falls Sensoren angebracht sind) der Hauptständerwicklungen alle 15 bis 30 Minute. Zeichnen Sie einen Graphen des Isolationswiderstands, IR (y-Achse), bezüglich der Zeit, t (x-Achse).

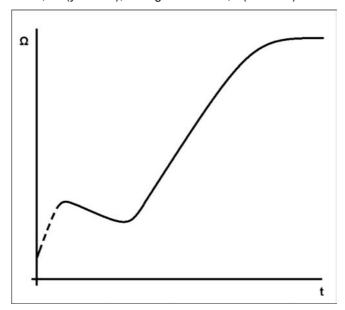


ABBILDUNG 19. GRAPH DES ISOLATIONSWIDERSTANDES

Eine typische Kurve zeigt einen anfänglichen Anstieg des Widerstands, einen Abfall und dann einen schrittweisen Anstieg bis zu einem stabilen Zustand; wenn die Wicklungen nur leicht feucht sind, wird der gestrichelt dargestellte Teil der Kurve möglicherweise nicht erzeugt. Setzen Sie die Trocknung eine Stunde fort, nachdem der stabile Zustand erreicht ist.

HINWEIS

Der Wechselstromgenerator darf erst wieder in Betrieb genommen werden, wenn der Mindestisolationswiderstand erreicht wurde.

8 Bauteilübersichten

8.1 HC4 Einlager-Wechselstromgenerator

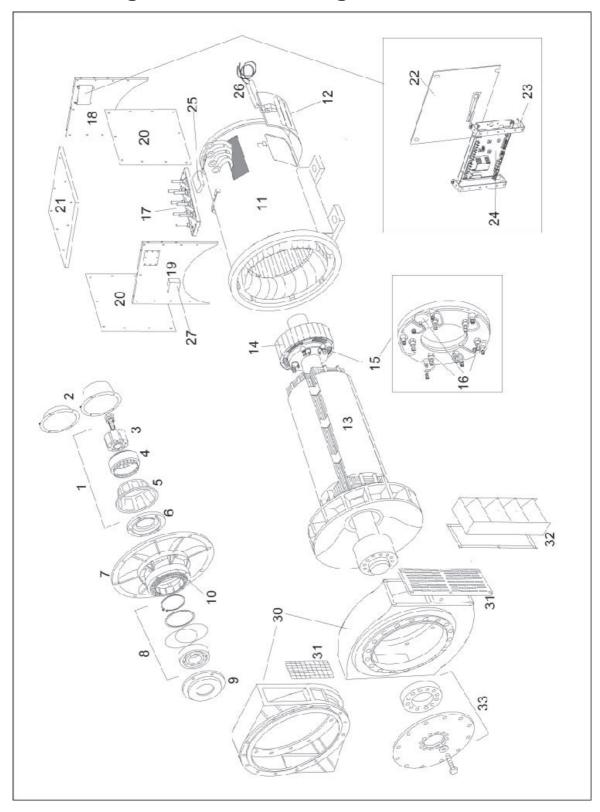


ABBILDUNG 20. HC4 EINLAGER-WECHSELSTROMGENERATOR

8. Bauteilübersichten 07-2019

8.2 HC4 Zweilager-Wechselstromgenerator

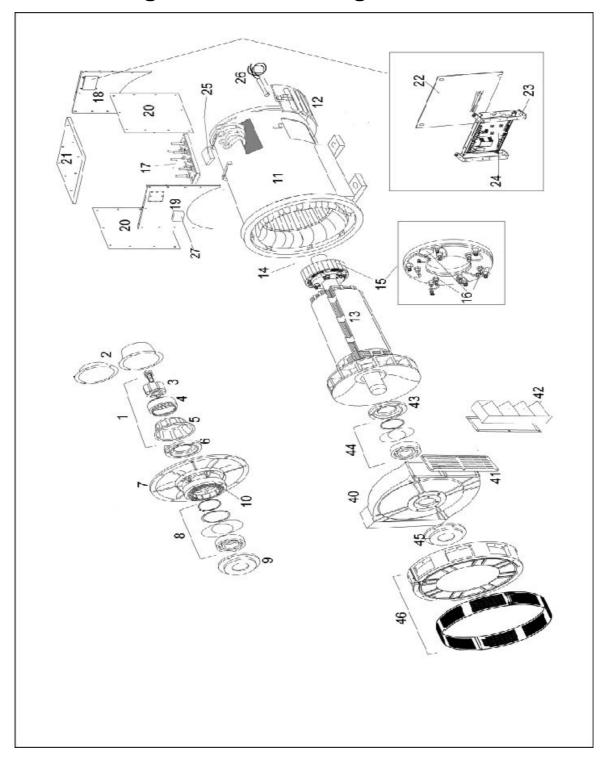


ABBILDUNG 21. HC4 ZWEILAGER-WECHSELSTROMGENERATOR

07-2019 8. Bauteilübersichten

8.3 HC5 Einlager-Wechselstromgenerator

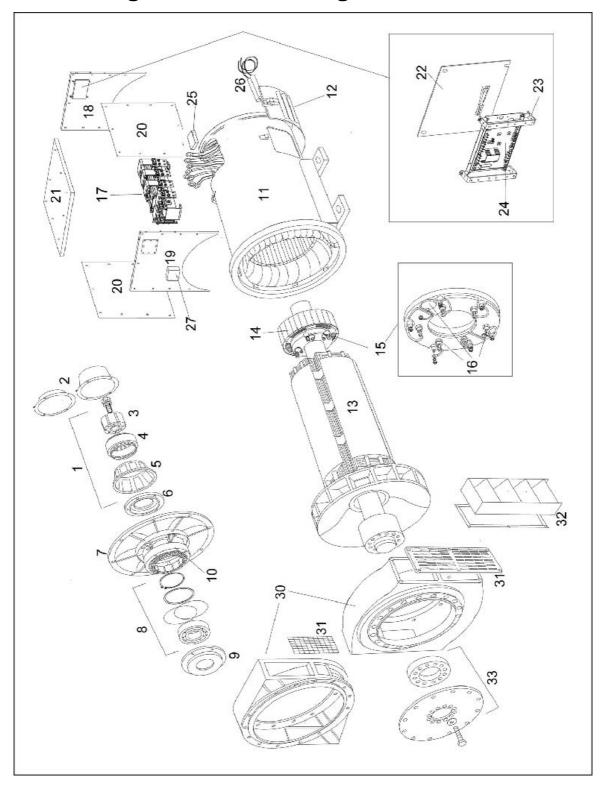


ABBILDUNG 22. HC5 EINLAGER-WECHSELSTROMGENERATOR

8. Bauteilübersichten 07-2019

8.4 HC5 Zweilager-Wechselstromgenerator

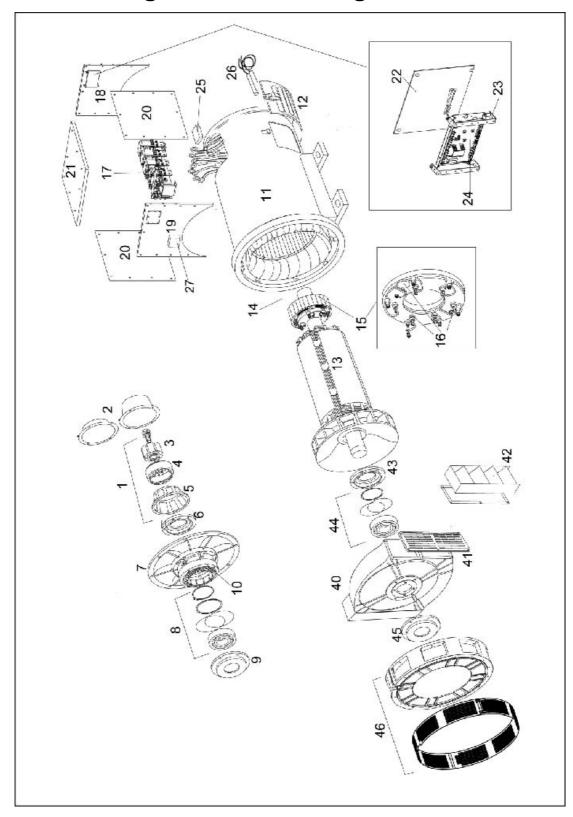


ABBILDUNG 23. HC5 ZWEILAGER-WECHSELSTROMGENERATOR

07-2019 8. Bauteilübersichten

8.5 HC6 Einlager-Wechselstromgenerator

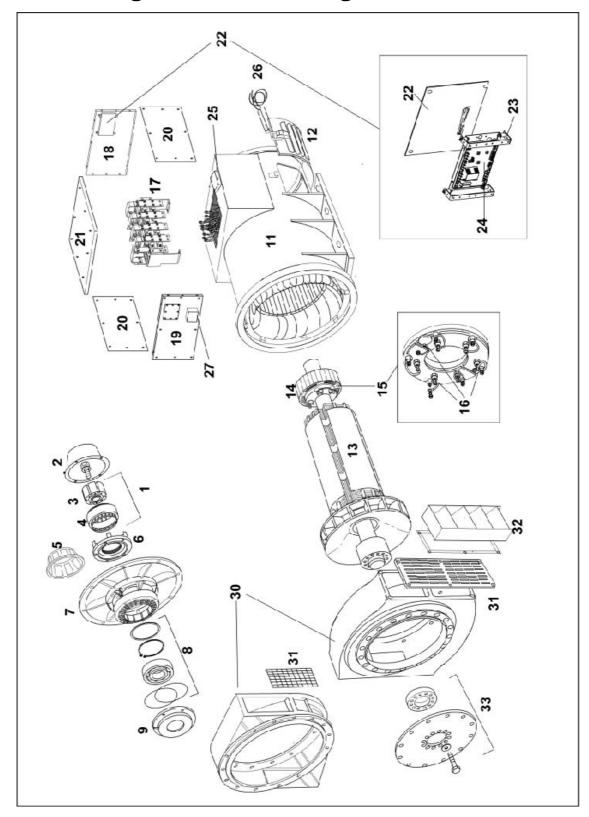


ABBILDUNG 24. HC6 EINLAGER-WECHSELSTROMGENERATOR

8. Bauteilübersichten 07-2019

8.6 HC6 Zweilager-Wechselstromgenerator

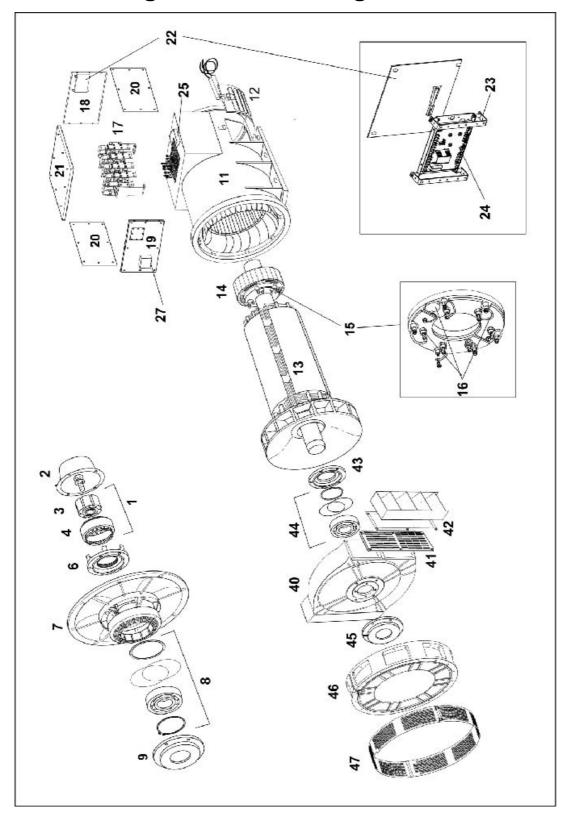


ABBILDUNG 25. HC6 ZWEILAGER-WECHSELSTROMGENERATOR

07-2019 8. Bauteilübersichten

8.7 HC Teile und Befestigungen

TABELLE 20. HC TEILE UND BEFESTIGUNGEN

Referenz	Komponente	Befestigung	Menge	Drehmomen t (Nm)
1	Alle PMG-Teile	-	-	-
2	PMG-Abdeckung/Nicht-PMG-Abdeckung	M6 x 16	4	10
3	PMG-Läufer	M10 x 100	1	50
4	PMG-Ständer	M6 x 45	4	10
5	PMG-Kranz (falls montiert)	-	-	-
6	Lagerdeckel Nicht-Antriebsseite	M10 x 30	4	50
7	Klammer Nicht-Antriebsseite	M12 x 40	8	50
8	Alle Lagerteile der Nicht-Antriebsseite	-	-	-
9	Lagerkartusche Nichtantriebsseite	M10 x 50	4	50
10	Erregerständer	M8	6	26
11	Hauptrahmen	-	-	-
12	Lufteinlassabdeckung	Splint	-	-
13	Hauptläufer	-	-	-
14	Erregerläufer	-	-	-
15	Gleichrichterbaugruppe	M6 x 65	4	10
16	Diode/Varistor	-	-	2,6 - 3,1
17	Hauptklemmen	M12 x 40	8	50
18	Endplatte Anschlusskasten – Nicht- Antriebsseite	M10 x 35	4	50
19	Endplatte Anschlusskasten – Antriebsseite	M10 x 25	2	50
20	Seitenplatte Anschlusskasten	M6 x 12	20	6
21	Anschlusskastendeckel	M6 x 12	8	6
22	AVR-Abdeckplatte	M5 x 12	4	5
23	AVR-Montagehalterung	M5 x 12	6	5
24	AVR	M5 x 30	4	5
25	Hilfsanschlussplatine	M6 x 25	8	10
26	Antikondensationsheizung (Stillstandsheizung)	M6	2	n/a
27	Heizungs-Anschlusskasten	M4 x 12	2	5
30	Adapter Antriebsseite (1 Lager)	M12 x 40	8	95
31	Luftauslassgitter Antriebsseite (1 Lager)	M5 x 12	12	5
32	Klappen Antriebsseite (1 Lager)	M5 x 16	12	5
33	Kupplungsnabe Antriebsseite und Kupplungsscheiben (1 Lager)	M20 x 55	8	479

8. Bauteilübersichten 07-2019

Referenz	Komponente	Befestigung	Menge	Drehmomen t (Nm)
40	Klammer Antriebsseite (2 Lager)	M12 x 40	8	95
41	Luftauslassgitter Antriebsseite (2 Lager)	M5 x 12	12	5
42	Klappen Antriebsseite (2 Lager)	M5 x 16	12	5
43	Lagerkartusche Antriebsseite (2 Lager)	M10 x 50	4	50
44	Alle Lagerteile Antriebsseite (2 Lager)	-	ı	-
45	Lagerdeckel Antriebsseite (2 Lager)	M10 x 30	4	50
46	Adapter Antriebsseite (2 Lager)	M12 x 40	8	95
47	Adaptergitter Antriebsseite (2 Lager)	M5 x 12	12	5

9 Technische Daten

HINWEIS

Vergleichen Sie die Messergebnisse mit denen des im Lieferumfang des Generators enthaltenen Testzertifikats.

9.1 HC Wicklungswiderstände

TABELLE 21. HC WICKLUNGSWIDERSTÄNDE

	Widerstand der Wicklungen bei 22 °C (Messwerte sollen nicht um mehr als 10 % abweichen)								
tor	Hauptständer (Leitung - Leitung) (Ohm)		(mr		(mr				
Wechselstromgenerator	311 (U1-U2) (V1-V2) (W1-W2) (U5-U6) (V5-V6) (W5-W6)	17 (U1-U2) (V1-V2) (W1-W2) (U5-U6) (V5-V6) (W5-W6)	14 (U1-U2) (V1-V2) (W1-W2) (U5-U6) (V5-V6) (W5-W6)	25 (U1-U2) (V1-V2) (W1-W2) (U5-U6) (V5-V6) (W5-W6)	27 (U1-U2) (V1-V2) (W1-W2) (U5-U6) (V5-V6) (W5-W6)	Erregerständer (Ohm)	Erregerläufer, L-L (Ohm)	Hauptläufer (Ohm)	PMG-Ständer, L-L (Ohm)
HC434C	0,0083	0,0115	0,0055	0,0020	0,0154	18	0,136	0,92	3,8
HC434D	0,0062	0,0100	0,0045	0,0160	0,0160	18	0,136	1,05	3,8
HC434E	0,0045	0,0075	_	0,0140	0,0100	18	0,136	1,19	3,8
HC434F	0,0037	0,0055	_	0,0105	0,0075	18	0,136	1,37	3,8
HC444C	0,0083	0,0115	0,0055	0,0020	0,0154	18	0,136	0,92	_
HC444D	0,0062	0,0100	0,0045	0,0160	0,0160	18	0,136	1,05	_
HC444E	0,0045	0,0075	_	0,0140	0,0100	18	0,136	1,19	_
HC444F	0,0037	0,0055	_	0,0105	0,0075	18	0,136	1,37	_
HC534C	0,0033	0,0053	0,0026	0,0100	0,0065	17	0,184	1,55	3,8
HC534D	0,0025	0,0040	0,0021	0,0075	0,0005	17	0,184	1,77	3,8
HC534E	0,0022	0,0034	0,0013	_	0,0044	17	0,184	1,96	3,8
HC534F	0,0019	0,0025	0,0013	0,0050	0,0041	17	0,184	2,46	3,8
HC544C	0,0033	0,0053	0,0026	0,0100	0,0065	17	0,184	1,55	_
HC544D	0,0025	0,0040	0,0021	0,0075	0,0005	17	0,184	1,77	_
HC544E	0,0022	0,0034	0,0013	_	0,0044	17	0,184	1,96	_
HC544F	0,0019	0,0025	0,0013	0,0050	0,0041	17	0,184	2,46	_
HC634G	0,0017	-	_	_	_	17	0,158	1,75	3,8
HC634H	0,0013	_	_	_	_	17	0,158	1,88	3,8
HC634J	0,0011	_	_	_	_	17	0,158	2,09	3,8

9. Technische Daten 07-2019

	Wider	stand der	Wicklung		°C (Messv abweicher	verte solle 1)		n mehr als	
tor	Haup	tständer ((Leitung -	Leitung) (Ohm)		(Ohm)		(Ohm)
Wechselstromgenerator	311	17	14	25	27	(Ohm)	0)	_	
gen	(U1-U2)	(U1-U2)	(U1-U2)	(U1-U2)	(U1-U2)			(Ohm)	
l É	(V1-V2)	(V1-V2)	(V1-V2)	(V1-V2)	(V1-V2)	der]r,		
stro	(W1-W2)	(W1-W2)	(W1-W2)	(W1-W2)	(W1-W2)	tän	iufe	fer	nde
Sels	(U5-U6)	(U5-U6)	(U5-U6)	(U5-U6)	(U5-U6)	ers	erlë	Iläu	Stä
Ç	(V5-V6)	(V5-V6)	(V5-V6)	(V5-V6)	(V5-V6)	Erregerständer	regerläufer,	Hauptläufer	PMG-Ständer,
M _e	(W5-W6)	(W5-W6)	(W5-W6)	(W5-W6)	(W5-W6)	Ē	Err	На	P
HC634K	0,0009	_	_	_	_	17	0,158	2,36	3,8

	Widerstand der Wicklungen bei 22 °C (Messwerte sollen nicht um mehr als 10 % abweichen)								
tor	Haup	tständer (Leitung -	Leitung) (Ohm)	((mı		(mr
Wechselstromgenerator	312 (U1-U2) (V1-V2) (W1-W2)	07 (U1-U2) (V1-V2) (W1-W2)	13 (U1-U2) (V1-V2) (W1-W2)	26 (U1-U2) (V1-V2) (W1-W2)	28 (U1-U2) (V1-V2) (W1-W2)	Erregerständer (Ohm)	Erregerläufer, L-L (Ohm)	Hauptläufer (Ohm)	PMG-Ständer, L-L (Ohm)
HC434F	_	_	0,0060	_	_	18	0,136	1,37	3,8
HC444F	_	_	0,0060	_	_	18	0,136	1,37	_
HC534E	_	_	-	0,0130	_	17	0,184	1,96	3,8
HC544E	_	_	-	0,0130	_	17	0,184	1,96	_
HC634G	0,0034	0,0055	0,0002	0,0090	0,0075	17	0,158	1,75	3,8
HC634H	0,0025	0,0036	0,0019	0,0080	-	17	0,158	1,88	3,8
HC634J	0,0022	0,0030	0,0015	0,0060	_	17	0,158	2,09	3,8
HC634K	0,0017	0,0026	0,0010	0,0045	0,0030	17	0,158	2,36	3,8
HC636G	0,0090	0,0102	_	_	_	17	0,200	1,12	8,22
HC636H	0,0063	0,0102	_	_	_	17	0,200	1,33	8,22
HC636J	0,0049	0,0070	_	_	_	17	0,200	1,50	8,22
HC636K	0,0039	0,0060	_	_	_	17	0,200	1,75	8,22

10 Service-Teile

Wir empfehlen die Verwendung von STAMFORD-Originalersatzteilen, die Sie bei unseren Servicepartnern erhalten. Die Adressen unserer Service-Stützpunkte finden Sie unter www.stamford-avk.com. www.stamford-avk.com.

10.1 Ersatzteilbestellungen

Geben Sie bei der Bestellung von Ersatzteilen stets die Seriennummer oder ID-Nummer der Maschine und den Maschinentyp sowie eine Beschreibung des Teils an. Die Seriennummer der Maschine finden Sie auf dem Leistungsschild des Generators oder dem Generatorträger.

10.2 Kundendienst

Die Service-Techniker von Cummins Generator Technologies sind erfahrene Fachleute und umfassend darin geschult, bestmöglichen Kunden-Support zu liefern. Unser weltweites Service-Angebot:

- · Erstinbetriebnahme Ihres Wechselstromgenerators vor Ort
- Lagerwartung und Überwachung des Lagerzustands vor Ort
- Prüfung des Isolationszustands vor Ort
- · Einrichten des AVR einschl. Zubehör vor Ort

Die Adressen unserer Service-Stützpunkte finden Sie unter www.stamford-avk.com.

10.3 Ersatzteilempfehlungen

Bei kritischen Anwendungen sollte sich stets ein Satz dieser Serviceteile beim Wechselstromgenerator befinden.

TABELLE 22. HC4 SERVICETEILE

Teil	Nummer
Gleichrichter-Servicesatz	RSK-5001
(3 Durchlass- und 3 Sperrdioden mit Varistoren)	
MX321 AVR (wenn verbaut)	E000-23212/1P
MX341 AVR (wenn verbaut)	E000-23412/1P
AS440 AVR (wenn verbaut)	E000-24403/1P
DM110 AVR (wenn verbaut)	E000-23800
Gekapseltes Lager Antriebsseite (Baugruppe)	45-0319
Gekapseltes Lager Nicht-Antriebsseite (Baugruppe)	45-0320

10. Service-Teile 07-2019

TABELLE 23. HC5 SERVICETEILE

Teil	Nummer
Gleichrichter-Servicesatz (3 Durchlass- und 3 Sperrdioden mit Varistoren)	RSK-5001
MX321 AVR (wenn verbaut)	E000-23212/1P
MX341 AVR (wenn verbaut)	E000-23412/1P
AS440 AVR (wenn verbaut)	E000-24403/1P
DM110 AVR (wenn verbaut)	E000-23800
HC5 1	Lager
Gekapseltes Lager Nicht-Antriebsseite (Baugruppe)	45-0320
Nachschmierbares Lager Nicht-Antriebsseite (Baugruppe)	45-1099
HC5 2	Lager
Gekapseltes Lager Antriebsseite (Baugruppe)	45-0321
Gekapseltes Lager Nicht-Antriebsseite (Baugruppe)	45-0320
Nachschmierbares Lager Antriebsseite (Baugruppe)	45-1100
Nachschmierbares Lager Nicht-Antriebsseite (Baugruppe)	45-1099

07-2019 10. Service-Teile

TABELLE 24. HC6 SERVICETEILE

Teil	Nummer
Gleichrichter-Servicesatz (3 Durchlass- und 3 Sperrdioden mit Varistoren)	RSK-6001
MX321 AVR (wenn verbaut)	E000-23212/1P
MX341 AVR (wenn verbaut)	E000-23412/1P
AS440 AVR (wenn verbaut)	E000-24403/1P
DM110 AVR (wenn verbaut)	E000-23800
HC6 1	Lager
Gekapseltes Lager Nicht-Antriebsseite (Baugruppe)	45-0340
Nachschmierbares Lager Nicht-Antriebsseite (Baugruppe)	45-1099
HC6 2	Lager
Gekapseltes Lager Antriebsseite (Baugruppe)	45-0339
Gekapseltes Lager Nicht-Antriebsseite (Baugruppe)	45-0340
Nachschmierbares Lager Antriebsseite (Baugruppe)	45-0342
Nachschmierbares Lager Nicht-Antriebsseite (Baugruppe)	45-0343

10.4 Schmiermittel Klüber Asonic GHY72

Alle Versuche mit Lagern und Lebensdauerberechnungen für Lager basieren auf der Verwendung des Schmiermittels Klüber Asonic GHY72.

10. Service-Teile 07-2019

Leerseite

11 Entsorgung

Den größten Anteil an Eisen, Stahl und Kupfer des Generators können Recycling-Spezialunternehmen zurückgewinnen. Weitere Informationen erhalten Sie beim Kundendienst.

11.1 Recyclingfähiges Material

Trennen Sie Nichtedelmetalle wie Eisen, Kupfer und Stahl und entfernen Sie Anstriche, Polyesterharz und Isolierband und/oder Kunststoffrückstände von allen Bauteilen. Entsorgen Sie den Restabfall

Eisen, Stahl und Kupfer können nun wiederverwertet werden.

11.2 Sonderabfall

Entfernen Sie Stromkabel, Elektronikkomponenten und Kunststoffe vom Wechselstromgenerator. Komponenten müssen gesondert behandelt werden, um wiederverwertbare und Reststoffe zu trennen.

Recycelbare Stoffe der Wiederverwertung zuführen.

11.3 Restabfall

Lassen Sie den Restabfall aus den beiden oben genannten Prozessen von einem Spezialunternehmen entsorgen.

11. Entsorgung 07-2019

Leerseite

