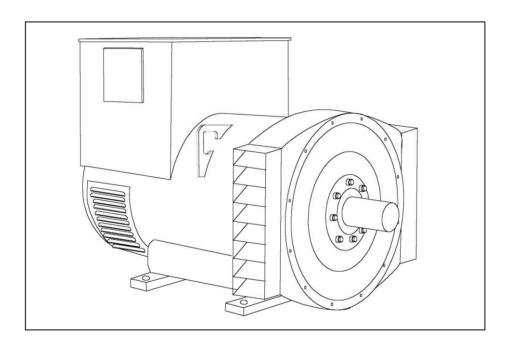
STAMFORD


S4L1M-C41 Wdg.14 - Technical Data Sheet

Standards

STAMFORD industrial alternators meet the requirements of the relevant parts of the IEC EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100 and As1359. Other standards and certifications can be considered on request.

Quality Assurance

Alternators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

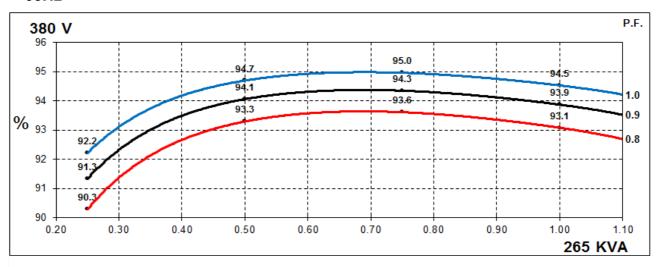
Excitation and Voltage Regulators

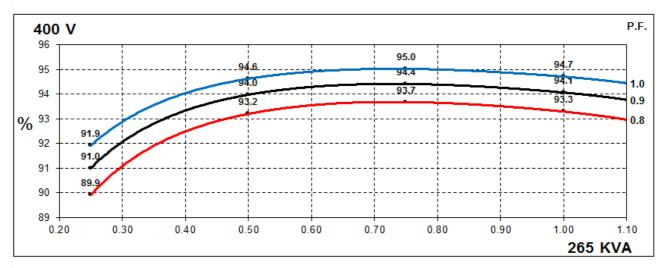
Excitation System								
AVR Type	MX341	MX321						
Voltage Regulation	± 1.0%	± 0.5%			with 4% Engine Governing			
AVR Power	PMG	PMG						

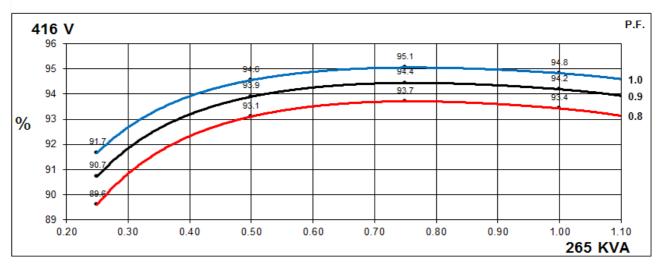
No Load Excitation Voltage (V)	12 - 9
No Load Excitation Current (A)	0.7 - 0.5
Full Load Excitation Voltage (V)	43 - 40
Full Load Excitation Current (A)	2.4 - 2.2
Exciter Time Constant (seconds)	0.105

STAMFORD S4L1M-C41 Wdg.14

Electrical Data Insulation System **CLASS H** Stator Winding DOUBLE LAYER LAP Winding Pitch TWO THIRDS Winding Leads 12 Winding Number 14 Number of Poles 4 IP Rating IP23 RFI Suppression BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. Refer to factory for others Waveform Distortion NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0% Short Circuit Ratio 1/Xd Steady State X/R Ratio 10.6 60 Hz Telephone Interference TIF<50 Cooling Air 0.99 m³/sec 2100cfm Voltage Star 380 400 416 kVA Base Rating (CLASS H) for Reactance Values 265 265 265 Saturated Values in Per Unit at Base Ratings and Voltages Xd Dir. Axis Synchronous 2.67 2.41 2.23 X'd Dir. Axis Transient 0.18 0.16 0.15 X"d Dir. Axis Subtransient 0.12 0.11 0.10 Xq Quad. Axis Reactance 2.31 2.08 1.93 X"q Quad. Axis Subtransient 0.30 0.27 0.25 XL Stator Leakage Reactance 0.08 0.07 0.07 X2 Negative Sequence Reactance 0.21 0.19 0.18 X0 Zero Sequence Reactance 0.07 0.06 0.06 **Unsaturated Values in Per Unit at Base Ratings and Voltages** Xd Dir. Axis Synchronous 3.20 2.89 2.67 X'd Dir. Axis Transient 0.21 0.19 0.18 X"d Dir. Axis Subtransient 0.14 0.13 0.12 Xq Quad. Axis Reactance 2.38 2.15 2.31 X"q Quad. Axis Subtransient 0.36 0.32 0.30 XL Stator Leakage Reactance 0.09 0.08 0.08 XIr Rotor Leakage Reactance 0.12 0.11 0.10 X2 Negative Sequence Reactance 0.25 0.23 0.21 X0 Zero Sequence Reactance 0.08 0.07 0.07

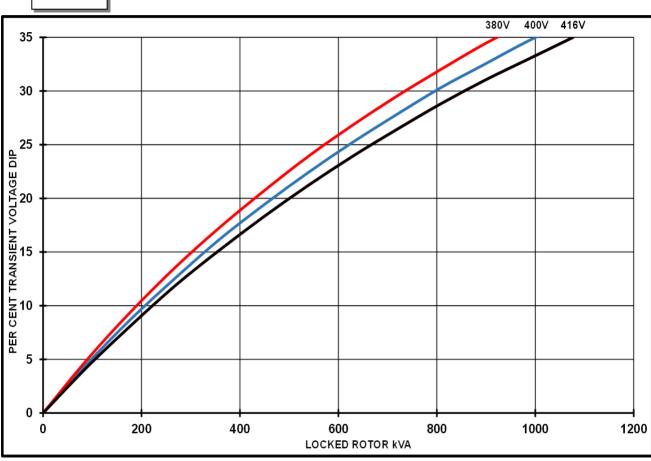



Time Constants (Seconds)							
T'd TRANSIENT TIME CONST.		0.08					
T"d SUB-TRANSTIME CONST.	0.019						
T'do O.C. FIELD TIME CONST.	1.7						
Ta ARMATURE TIME CONST.	0.018						
T"q SUB-TRANSTIME CONST.	ONST. 0.0304						
Resistances in Ohms (Ω) at 22 0	C						
Stator Winding Resistance (Ra), per phase for series connected		0.011					
Rotor Winding Resistance (Rf)		0.92					
Exciter Stator Winding Resistance		18					
Exciter Rotor Winding Resistance per phase	0.068						
PMG Phase Resistance (Rpmg) per phase		1.9					
Positive Sequence Resistance (R1)	0.0	01375					
Negative Sequence Resistance (R2)	0.01584						
Zero Sequence Resistance (R0)	0.01375						
Saturation Factors	380V						
SG1.0	0.19						
SG1.2		0.88					
Mechanical Data							
Shaft and Keys		ed to better than BS6861: Part 1 Grade 2.5 for ring generators are balanced with a half key.					
	1 Bearing	2 Bearings					
SAE Adaptor	SAE 0, 0.5, 1, 2	SAE 0, 0.5, 1, 2					
Moment of Inertia	3.5531kgm ²	3.3543kgm ²					
Weight Wound Stator	370kg	370kg					
Weight Wound Rotor	324kg 301kg						
Weight Complete Alternator	850kg 885kg						
Shipping weight in a Crate	920kg 945kg						
Packing Crate Size	155 x 87 x 107 (cm) 155 x 87 x 107 (cm)						
Maximum Over Speed	Maximum Over Speed 2250 RPM for two minutes						
Bearing Drive End	BALL. 6317 (ISO)						
Bearing Non-Drive End	BALL. 6	314 (ISO)					

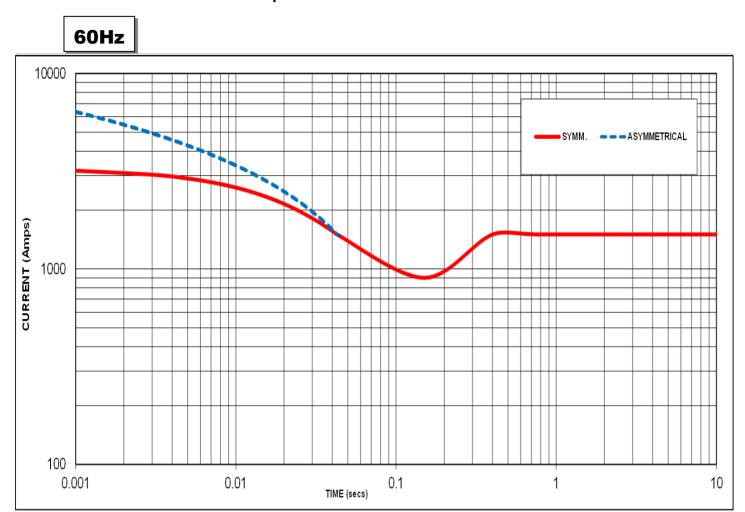


THREE PHASE EFFICIENCY CURVES

60Hz



Locked Rotor Motor Starting Curves



Transient Voltage	Dip Scaling Factor	Transient Voltage Rise Scaling Factor			
PF	Factor	For voltage rice multiply voltage die by			
< 0.5	1	For voltage rise multiply voltage dip by			
0.5	0.97	1.25			
0.6	0.93				
0.7	0.9				
0.8	0.85				
0.9 0.83					

Three-phase Short Circuit Decrement Curve

Sustained Short Circuit = 1500 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

60Hz	
Voltage	Factor
380V	X 1.00
400V	X 1.05
415V	X 1.09

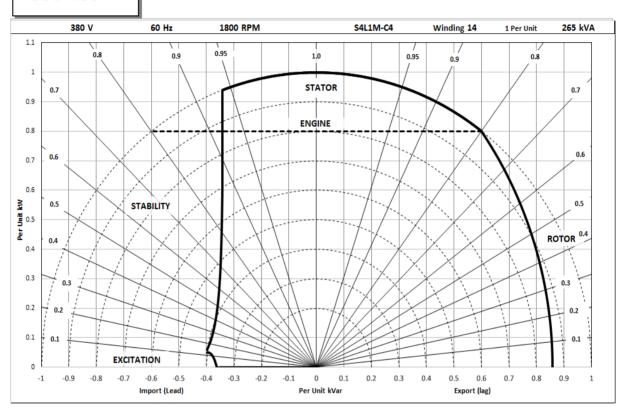
The sustained current value is constant irrespective of voltage level

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

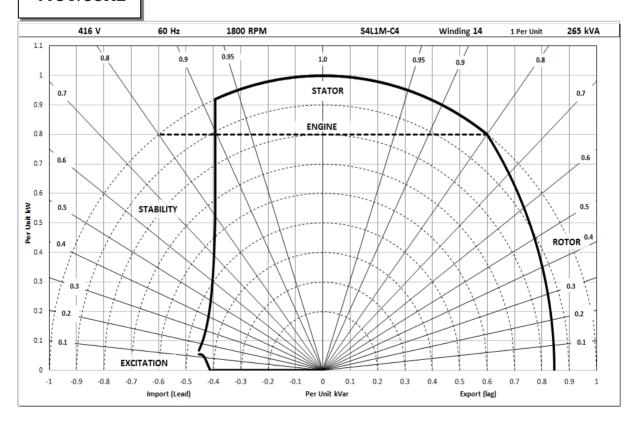
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3


Curves are drawn for Star connected machines under no-load excitation at rated speeds. For other connection the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732



Typical Alternator Operating Charts

380V/60Hz

416V/60Hz

RATINGS AT 0.8 POWER FACTOR

	Class - Temp Rise	Cont. H - 110/50°C		Cont. F - 90/50°C			Cont. B - 70/50°C			
60	Series Star (V)	380	400	416	380	400	416	380	400	416
60	kVA	265	265	265	250	250	250	220	220	220
Hz	kW	212	212	212	200	200	200	176	176	176
	Efficiency (%)	93.1	93.3	93.4	93.3	93.4	93.5	93.5	93.6	93.7
	kW Input	228	227	227	214	214	214	188	188	188

De-Rates

All values tabulated above are subject to the following reductions:

- 5% when air inlet filters are fitted
- 3% for every 500 meters by which the operating altitude exceeds 1000 meters above mean sea level
- 3% for every 5°C by which the operational ambient temperature exceeds 40°C
- For any other operating conditions impacting the cooling circuit please refer to applications

Note: Requirement for operating in an ambient exceeding 60°C and altitude exceeding 4000 meters must be referred to applications.

Dimensional and Torsional Drawing

For dimensional and torsional information please refer to the alternator General Arrangement and rotor drawings available on our website (http://stamford-avk.com/)

Note: Continuous development of our products means that the information contained in our data sheets can change without notice, and specifications should always be confirmed with Cummins Generator Technologies prior to purchase.

Follow us @stamfordavk

View our videos at youtube.com/stamfordavk

news.stamford-avk.com

For Applications Support: applications@cummins.com

For Customer Service: service-engineers@stamford-avk.com

For General Enquiries: info@cumminsgeneratortechnologies.com

Copyright 2016. Cummins Generator Technologies Ltd. All rights reserved.

Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD is a registered trade mark of Cummins Generator Technologies Ltd.

