

UCM274C - Winding 06

Technica Data Sheet

UCM274C SPECIFICATIONS & OPTIONS

STANDARDS

Marine generators may be certified to Lloyds, DnV, Bureau Veritas, ABS, Germanischer-Lloyd or RINA. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX341 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) control system, and is standard on marine generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally,

over voltage protection is built-in and short circuit current level adjustments as an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Dedicated Single Phase windings have 4 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steadystate voltage regulation exceed 2%.

DE RATES

All values tabulated on page 6 are subject to the following reductions

5% when air inlet filters are fitted.

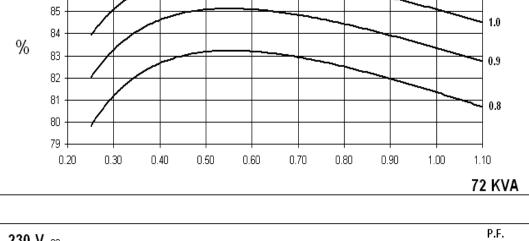
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

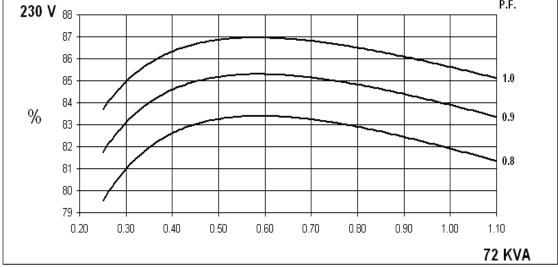
3% for every 5 C by which the operational ambient temperature exceeds 50 C.

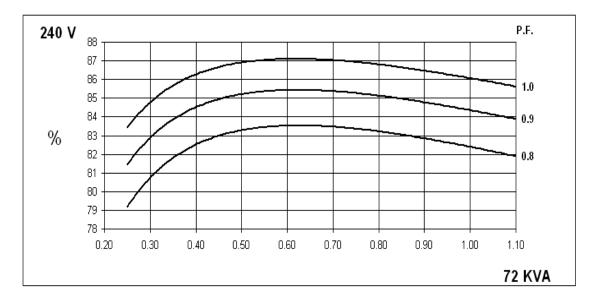
Note: Requirement for operating in an ambient exceeding 60 C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

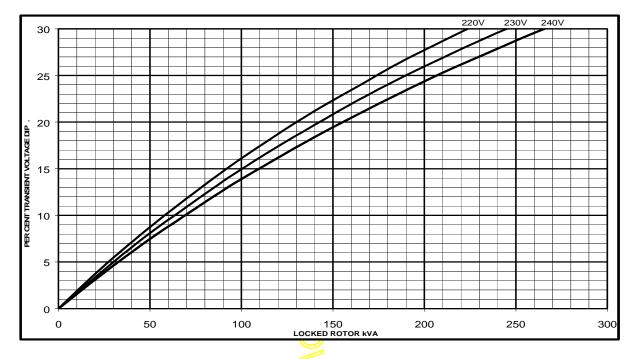

WINDING 06

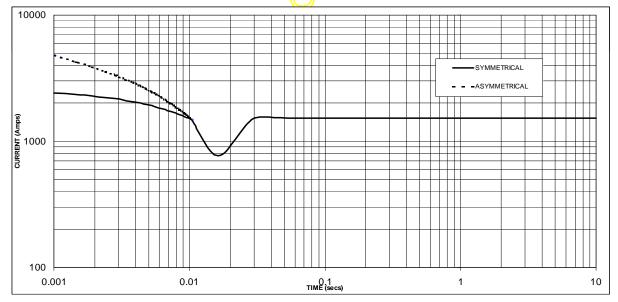

CONTROL SYSTEM	SEPARATELY E	XCITED BY P.M	G						
A.V.R.	MX341	MX321							
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% ENGINE	GOVERNING					
SUSTAINED SHORT CIRCUIT	REFER TO SHO		CREMENT CURVI						
INSULATION SYSTEM			CLAS	SS H					
PROTECTION	-		IP	23					
RATED POWER FACTOR	-		0.	.8					
STATOR WINDING		SINGLE LAYER CONCENTRIC							
WINDING PITCH	-	TWO THIRDS							
WINDING LEADS			2	1					
MAIN STATOR RESISTANCE		0.02	2 Ohms AT 22°C	SERIES CONNEC	CTED				
MAIN ROTOR RESISTANCE			1.12 Ohm	s at 22°C					
EXCITER STATOR RESISTANCE			20 Ohms	at 22°C					
EXCITER ROTOR RESISTANCE			0.078 Ohms PER	PHASE AT 22°C					
R.F.I. SUPPRESSION	BS EN 61	000-6-2 & B <mark>S</mark> EN	1 61000-6-4,VDE 0	875G, VDE 0875	N. refer to factory for others				
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-DISTO	ORTING LINEAR I	LOAD < 5.0%				
MAXIMUM OVERSPEED			2250 R	tev/Min					
BEARING DRIVE END			BALL. 6315	5-2RS (ISO)					
BEARING NON-DRIVE END			BALL. 6310)-2RS (ISO)					
		1 BEARING			2 BEARING				
WEIGHT COMP. GENERATOR		406 kg			420 kg				
WEIGHT WOUND STATOR		131 kg			131 kg				
WEIGHT WOUND ROTOR	133.78 kg 122.82 kg								
WR ² INERTIA		1.0288 kgm ²			0.9781 kgm ²				
SHIPPING WEIGHTS in a crate		439 kg			452 kg				
PACKING CRATE SIZE	105 x 67 x 103(cm) 105 x 67 x 103(cm)				05 x 67 x 103(cm)				
TELEPHONE INTERFERENCE		THF<2%			TIF<50				
COOLING AIR			0.617 m ³ /se	c 1308 cfm					
VOLTAGE SERIES	22	20	23	30	240				
VOLTAGE PARALLEL	11	10 🧲	11	15	120				
kVA BASE RATING FOR REACTANCE VALUES	7:	2	7	2	72				
Xd DIR. AXIS SYNCHRONOUS	2.3	31 📿	2.	12	1.95				
X'd DIR. AXIS TRANSIENT	0.2	21	0.	19	0.17				
X"d DIR. AXIS SUBTRANSIENT	0.4	13	0.	12	0.11				
Xq QUAD. AXIS REACTANCE	1.3	33	1.:	22	1.11				
X"q QUAD. AXIS SUBTRANSIENT	0.2	20	0.	18	0.16				
XL LEAKAGE REACTANCE	0.0	07	0.0	07	0.06				
X2 NEGATIVE SEQUENCE	0.4	16	0.	15	0.14				
X0 ZERO SEQUENCE	0.4	10	0.0	09	0.09				
	RE	ACTANCES AR	E SATURATED						
T'd TRANSIENT TIME CONST.			0.02	28 s					
T"d SUB-TRANSTIME CONST.			0.0	1 s					
T'do O.C. FIELD TIME CONST.			0.8	3 s					
Ta ARMATURE TIME CONST.			0.00	07 s					
SHORT CIRCUIT RATIO	<u> </u>		1/2	Xd					

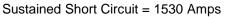


Winding 06

SINGLE PHASE EFFICIENCY CURVES P.F. 220 V 88 87 86 85 1.0 84 % 83 0.9 82 81 0.8 80 79 · 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 72 KVA







Winding 06 Locked Rotor Motor Starting Curve

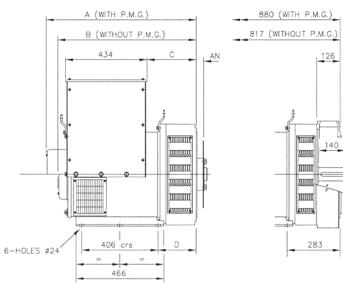
Short Circuit Decrement Curve, No-load Excitation at Rated Speed Based on series connection.

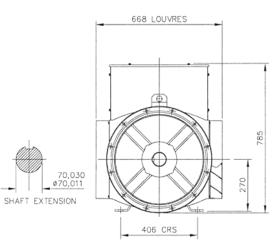
Note

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

Voltage	Factor
220V	X 1.00
230V	X 1.05
240V	X 1.09

The sustained current value is constant irrespective of voltage level


Winding 06


RATINGS

Class - Temp Rise		Cont. B - 70/50°C			Cont. F - 90/50°C			Cont. H - 110/50°C			
Class -	Temp Rise		0.8pf			0.8pf			0.8pf		
00.	Series (V)	220	230	240	220	230	240	220	230	240	
60 Hz	Parallel (V)	110	115	120	110	115	120	110	115	120	
	kVA	56.3	56.3	56.3	65.0	65.0	65.0	72.0	72.0	72.0	
	kW	45.0	45.0	45.0	52.0	52.0	52.0	57.6	57.6	57.6	
	Efficiency (%)	82.6	82.9	83.3	81.9	82.4	82.8	81.3	81.9	82.4	
	kW Input	54.5	54.3	54.0	63.5	63.1	62.8	70.8	70.3	69.9	

Γ	Class Tomp Diss		Cont. B - 70/50°C			Cont. F - 90/50°C			Cont. H - 110/50°C		
	Class -	lass - Temp Rise		1.0pf 🎾		1.0pf			1.0pf		
	00.	Series (V)	220	230	240	220	230	240	220	230	240
60 Hz	60 Hz	Parallel (V)	110	115	120	110	115	120	110	115	120
		kVA	56.3	56.3	56.3	65.0	65.0	65.0	72.0	72.0	72.0
		kW	56.3	56.3	56.3	65.0	65.0	65.0	72.0	72.0	72.0
		Efficiency (%)	86.2	86.5	86.8	85.6	86.1	86.5	85.1	85.6	86.1
		kW Input	65.3	65.1	64.9	75.9	75.5	75.1	84.6	84.1	83.6

SIN	GLE BEAR	COUPLING (DISCS			
ADAPTOR	A	B	C	D	DISC	AN
SAE 1	813,3	750,3	274,3	216,3	SAE 10	53,9
SAE 2	799	736	260	202	SAE 11,5	39,6
SAE 3	799	736	260	202	SAE 14	25,4

www.cumminsgeneratortechnologies.com

Copyright 2021, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.