
STANFORD[®] | Avk[®]

LV 804 X WDG 12 - Technical Data Sheet

FRAME LV 804 X

STAMFORD AvK

SPECIFICATIONS & OPTIONS

STANDARDS

Cummins Generator Technologies industrial generators Standard generators feature a main stator with 6 ends meet the requirements of BS EN 60034 and the relevant brought out to the terminals, which are mounted on the sections of other national and international standards such frame at the non-drive end of the generator. A sheet steel as BS5000, VDE 0530, IEC60034, CSA C22.2-100, AS1359. terminal box contains the AVR and provides ample space for Other standards and certifications can be considered on request.

DESCRIPTION

are brushless with a rotating field. They are separately BS6861:Part 1 Grade 2.5 for minimum vibration in operation. excited by the STAMFORD Permanent Magnet Generator Two bearing generators are balanced with a half key. (PMG). This is a shaft mounted, high frequency, pilot exciter which provides a constant supply of clean power via the INSULATION/IMPREGNATION Automatic Voltage Regulator (AVR) to the main exciter. The The insulation system is class 'H'. main exciter output is fed to the main rotor, through a full All wound components are impregnated with materials and wave bridge rectifier, protected by surge suppression.

VOLTAGE REGULATORS

The P80 range generators complete with a PMG are available with one AVR. Underspeed protection (UFRO) is also provided by the AVR. The UFRO will reduce the generator output voltage proportional to the speed of the generator below a pre-settable level.

The STAMFORD | AvK Digital Excitation Control System (DM110) is an electronic, solid-state, microprocessor based control device. The DM110 regulates the output voltage of a the ac generator by controlling the current into the generator exciter field. Input power to the DM110 is provided by a multi-pole, high-frequency, permanent magnet generator (PMG).

The DM110 is supplied in an encapsulated package designed for behind-the-panel mounting. Front panel indicators (LEDs) annunciate DM110 status and system conditions. DM110 connections are made through guarterinch, guick-connect terminals on the rear panel. A 9pin DB-9 type connector on the rear panel provides communication between the DM110 and an IBM compatible PC.

Technical details on the DM110 are available on the Stamford-AvK website using the following URL: https://www.stamford-avk.com/downloads/avr-manuals

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low levels of voltage waveform distortion.

TERMINALS & TERMINAL BOX

the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

The STAMFORD PG80 range of synchronous ac generators All generator rotors are dynamically balanced to better than

processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

NOTE ON REGULATION

Analogue AVRs: The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DERATE

All values tabulated on page 8 are subject to the following reductions

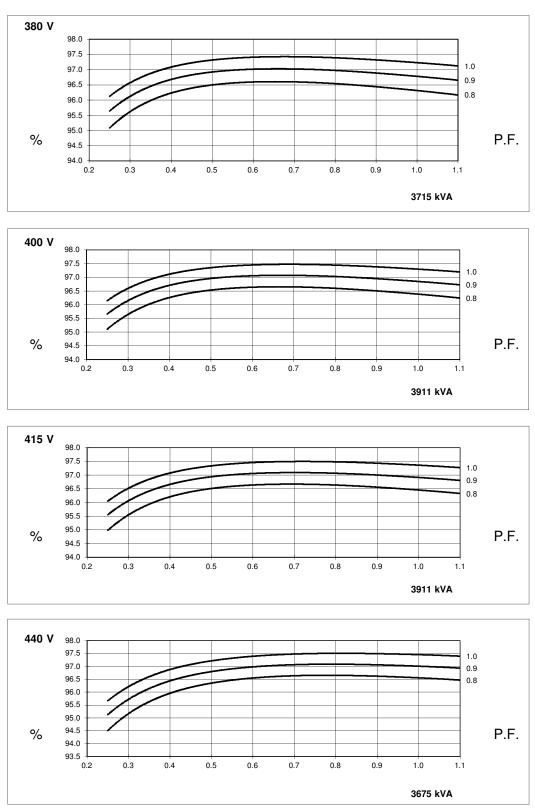
5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

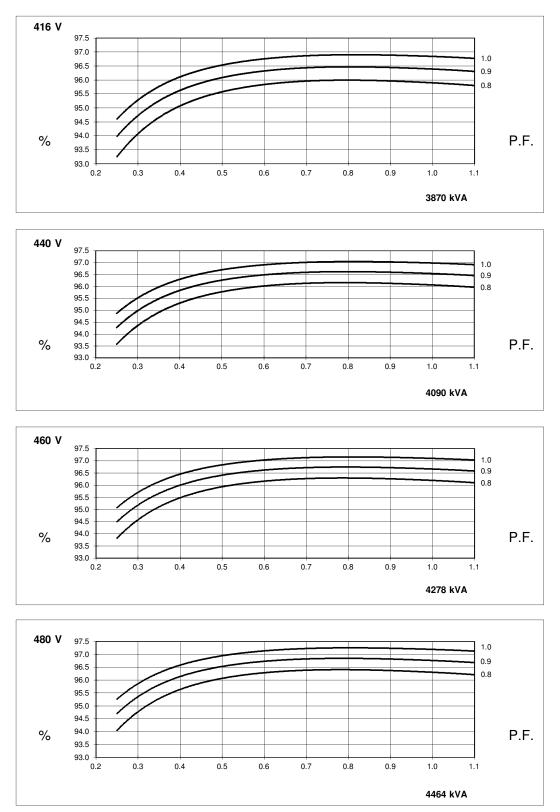
3% for every 5℃ by which the operational ambient temperature exceeds 40 °C.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding

Front cover drawing is typical of the product range.



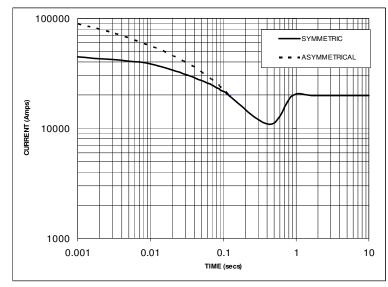
FRAME LV 804 X WINDING 12


RATINGS	REFER TO	SALES AND	SERVICE BR	RIEFING							
MAXIMUM ALTITUDE	1000 METRES ABOVE SEA LEVEL										
MAXIMUM AMBIENT TEMPERATURE	40º C	40º C									
CONTROL SYSTEM SERIES 3	SEPARATE		BVPMG								
A.V.R.		SEPARATELY EXCITED BY P.M.G. FULL WAVE RECTIFIED									
VOLTAGE REGULATION	± 0.25%										
SUSTAINED SHORT CIRCUIT	± 0.25% REFER TO SHORT CIRCUIT DECREMENT CURVES OF THIS SECTION										
	THEI EIT TO					SECTION					
INSULATION SYSTEM	CLASS H										
PROTECTION	IP23 STANDARD										
RATED POWER FACTOR					.8						
STATOR WINDING				DOUBLE I	AYER LAP						
WINDING PITCH				2	/3						
WINDING LEADS					6						
R.F.I. SUPPRESSION	BS	BS EN 50081/2-1/2 VDE 0875G VDE 0875N For other standards apply to the factory									
WAVEFORM DISTORTION		NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 3.0%									
MAXIMUM OVERSPEED		2250 Rev/Min									
BEARING DRIVE END		ISO 6236 C3									
BEARING NON DRIVE END				ISO 6	324 C3						
EFFICIENCY		F	REFER TO E	FFICIENCY C	URVES OF T	THIS SECTIC	N				
FREQUENCY		50	Hz			60)Hz				
TELEPHONE INTERFERENCE											
	THF< 2% TIF<50 4.0 m³/sec 4.5 m³/sec										
VOLTAGE STAR (Y)	380	400	415	440	416	440	460	480			
kVA BASE RATING FOR											
REACTANCE VALUES	3715	3911	3911	3675	3870	4090	4278	4464			
Xd DIRECT AXIS SYNCHRONOUS	2.526	2.400	2.230	1.864	2.655	2.508	2.400	2.300			
X'd DIRECT AXIS TRANSIENT	0.179	0.170	0.158	0.132	0.186	0.176	0.168	0.161			
X"d DIRECT AXIS SUB-TRANSIENT	0.131	0.124	0.115	0.096	0.137	0.130	0.124	0.119			
Xq QUADRATURE AXIS REACTANCE	1.695	1.610	1.496	1.250	1.766	1.668	1.597	1.530			
X"g QUAD. AXIS SUB-TRANSIENT	0.246	0.234	0.217	0.182	0.256	0.242	0.232	0.222			
XLLEAKAGE REACTANCE	0.077	0.073	0.068	0.057	0.080	0.075	0.072	0.069			
X2 NEGATIVE PHASE SEQUENCE	0.189	0.180	0.167	0.140	0.197	0.186	0.178	0.171			
XoZERO PHASE SEQUENCE	0.025	0.024	0.022	0.019	0.027	0.025	0.024	0.023			
REACTANCES ARE SATURATED	VALUES	ARE PER U	NIT AT RATI	NG AND VOL	TAGE INDIC	ATED TO IEC	60034 TOLE	RENCES			
T'd TRANSIENT TIME CONSTANT				0.2	213						
T"d SUB-TRANSIENT TIME CONSTANT	0.016										
T'do O.C. FIELD TIME CONSTANT		5.100									
Ta ARMATURE TIME CONSTANT				0.0	081						
SHORT CIRCUIT RATIO				1/	Xd						
STATOR WINDING RESISTANCE (L-N)				0.00	0256						
ROTOR WINDING RESISTANCE					0256 630						
EXCITER STATOR FIELD RESISTANCE					.00						
EXCITER ROTOR RESISTANCE (L-L) PMG STATOR RESISTANCE (L-L))92						
TING STATON NESISTAINUE (L-L)			RESISTAN		ARE IN OHM	IS AT 20º C					
			TEORIA			10 /11 20 0					
NO LOAD EXCITATION VOLTAGE				1	5.0						
FULL LOAD EXCITAION VOLTAGE				6	7.0						

Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.


THREE PHASE EFFICIENCY CURVES

THREE PHASE EFFICIENCY CURVES


FULL WAVE RECTIFIED AVR LOCKED ROTOR MOTOR STARTING CURVE

FRAME LV 804 X WDG 12 50Hz

Three Phase Short Circuit Decrement Curve No- Load Excitation at Rated Speed

Based on series star (wye) connection

NOTE 1

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO ADJUST THE VALUES FROM CURVES BETWEEN THE 0.001 SECONDS AND THE MINIMUM CURRENT POINT IN RESPECT OF NOMINAL OPERATING VOLTAGE

VOLTAGE	FACTOR
380V	X 0.95
400V	X 1.00
415V	X 1.04
440V	X1.10

THE SUSTAINED CURRENT VALUE IS CONSTANT IRRESPECTIVE OF VOLTAGE LEVEL

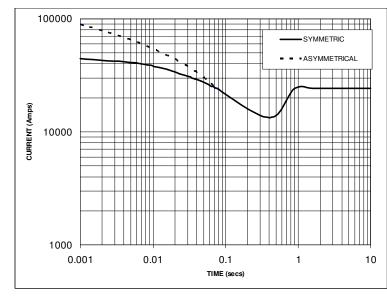
NOTE 2

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO CONVERT THE VALUES CALCULATED IN ACCORDANCE WITH NOTE 1 TO THOSE APPLICABLE TO THE VARIOUS TYPES OF SHORT CIRCUIT

3 PHASE	2 PHASE L-L	1 PHASE L-N
X 1.0	X 0.87	X 1.30
X 1.0	X 1.80	X 3.20
X 1.0	X 1.50	X 2.50
10 SEC	5 SEC	2 SEC
	X 1.0 X 1.0 X 1.0	X 1.0 X 0.87 X 1.0 X 1.80 X 1.0 X 1.50

SUSTAINED SHORT CIRCUIT =

19758 Amps


FULL WAVE RECTIFIED AVR LOCKED ROTOR MOTOR STARTING CURVE

FRAME LV 804 X WDG 12 60Hz

Three Phase Short Circuit Decrement Curve No- Load Excitation at Rated Speed

Based on series star (wye) connection

THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO ADJUST THE VALUES FROM CURVES BETWEEN THE 0.001 SECONDS AND THE MINIMUM CURRENT POINT IN RESPECT OF NOMINAL OPERATING VOLTAGE

VOLTAGE	FACTOR
416V	X 0.87
440V	X 0.92
460V	X0.96
480V	X1.00

THE SUSTAINED CURRENT VALUE IS CONSTANT IRRESPECTIVE OF VOLTAGE LEVEL

NOTE 2

NOTE 1

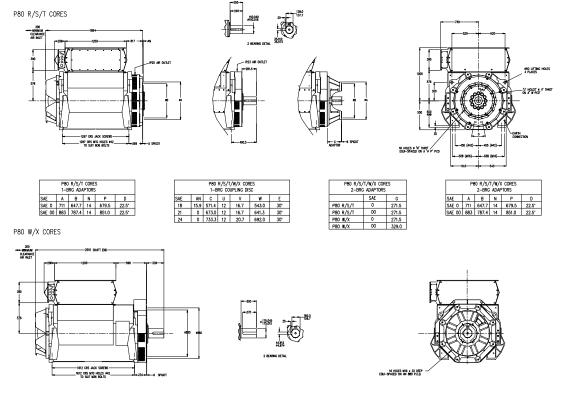
THE FOLLOWING MULTIPLICATION FACTORS SHOULD BE USED TO CONVERT THE VALUES CALCULATED IN ACCORDANCE WITH NOTE 1 TO THOSE APPLICABLE TO THE VARIOUS TYPES OF SHORT CIRCUIT

	3 PHASE	2 PHASE L-L	1 PHASE L-N
INSTANTANEOUS	X 1.0	X 0.87	X 1.30
MINIMUM	X 1.0	X 1.80	X 3.20
SUSTAINED	X 1.0	X 1.50	X 2.50
MAX SUSTAINED DURATION	10 SEC	5 SEC	2 SEC
ALL OTHER TIMES ARE UNCHANGED			

SUSTAINED SHORT CIRCUIT =

24162 Amps

FRAME LV 804 X


STAMFORD AvK

WINDING 12 0.8 Power Factor

RATINGS

Class - Temp Rise	С	ont. F -	105/40	°C	Cont. H - 125/40 °C			Standby - 150/40 ℃			Standby - 163/27 °C					
50Hz Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
kVA	3470	3655	3655	3435	3715	3911	3911	3675	3970	4180	4180	3970	4080	4300	4300	4040
kW	2776	2924	2924	2748	2972	3129	3129	2940	3176	3344	3344	3176	3264	3440	3440	3232
Efficiency (%)	96.4	96.4	96.5	96.6	96.3	96.4	96.5	96.6	96.2	96.3	96.4	96.5	96.2	96.3	96.3	96.5
kW Input	2881	3032	3030	2846	3086	3246	3244	3045	3301	3473	3470	3292	3394	3574	3571	3350
60Hz Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
kVA	3615	3820	3998	4172	3870	4090	4278	4464	4130	4370	4571	4770	4600	4490	4696	4900
kW	2892	3056	3198	3338	3096	3272	3422	3571	3304	3496	3657	3816	3680	3592	3757	3920
Efficiency (%)	95.9	96.1	96.2	96.3	95.9	96.1	96.2	96.3	95.8	96.0	96.1	96.2	95.7	96.0	96.1	96.2
kW Input	3015	3180	3324	3465	3228	3406	3558	3708	3448	3642	3804	3965	3844	3743	3909	4074

STAMFORD AvK

TD_LV804X.12.GB_26.03_20_GB